| paper_url
				 stringlengths 36 81 | paper_title
				 stringlengths 1 242 ⌀ | paper_arxiv_id
				 stringlengths 9 16 ⌀ | paper_url_abs
				 stringlengths 18 314 | paper_url_pdf
				 stringlengths 21 935 ⌀ | repo_url
				 stringlengths 26 200 | is_official
				 bool 2
				classes | mentioned_in_paper
				 bool 2
				classes | mentioned_in_github
				 bool 2
				classes | framework
				 stringclasses 9
				values | 
|---|---|---|---|---|---|---|---|---|---|
| 
	https://paperswithcode.com/paper/low-rank-adapting-models-for-sparse | 
	Low-Rank Adapting Models for Sparse Autoencoders | 
	2501.19406 | 
	https://arxiv.org/abs/2501.19406v1 | 
	https://arxiv.org/pdf/2501.19406v1.pdf | 
	https://github.com/adamkarvonen/sae_kl_finetune | false | false | true | 
	jax | 
| 
	https://paperswithcode.com/paper/learning-discriminative-features-with | 
	Learning Discriminative Features with Multiple Granularities for Person Re-Identification | 
	1804.01438 | 
	http://arxiv.org/abs/1804.01438v3 | 
	http://arxiv.org/pdf/1804.01438v3.pdf | 
	https://github.com/zp1018/ReID-MGN | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/squeezenet-alexnet-level-accuracy-with-50x | 
	SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size | 
	1602.07360 | 
	http://arxiv.org/abs/1602.07360v4 | 
	http://arxiv.org/pdf/1602.07360v4.pdf | 
	https://github.com/DT42/squeezenet_demo | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/transformation-of-wiktionary-entry-structure | 
	Transformation of Wiktionary entry structure into tables and relations in a relational database schema | 
	1011.1368 | 
	http://arxiv.org/abs/1011.1368v1 | 
	http://arxiv.org/pdf/1011.1368v1.pdf | 
	https://github.com/componavt/wikokit | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/time-expressions-in-mental-health-records-for | 
	Time Expressions in Mental Health Records for Symptom Onset Extraction | null | 
	https://aclanthology.org/W18-5621 | 
	https://aclanthology.org/W18-5621.pdf | 
	https://github.com/medesto/systems-adaptation | true | true | false | 
	none | 
| 
	https://paperswithcode.com/paper/metrical-accent-aware-vocal-onset-detection | 
	Metrical-accent Aware Vocal Onset Detection in Polyphonic Audio | 
	1707.06163 | 
	http://arxiv.org/abs/1707.06163v1 | 
	http://arxiv.org/pdf/1707.06163v1.pdf | 
	https://github.com/georgid/lakh_vocal_segments_dataset | true | true | false | 
	none | 
| 
	https://paperswithcode.com/paper/using-deep-neural-networks-to-predict-and | 
	Using Deep Neural Networks to Predict and Improve the Performance of Polar Codes | 
	2105.04922 | 
	https://arxiv.org/abs/2105.04922v1 | 
	https://arxiv.org/pdf/2105.04922v1.pdf | 
	https://github.com/brain-bzh/PolarCodesDNN | true | true | false | 
	none | 
| 
	https://paperswithcode.com/paper/automatic-guide-generation-for-stan-via | 
	Automatic Guide Generation for Stan via NumPyro | 
	2110.11790 | 
	https://arxiv.org/abs/2110.11790v1 | 
	https://arxiv.org/pdf/2110.11790v1.pdf | 
	https://github.com/deepppl/evaluation-autoguide | true | true | false | 
	jax | 
| 
	https://paperswithcode.com/paper/free-form-image-inpainting-with-gated | 
	Free-Form Image Inpainting with Gated Convolution | 
	1806.03589 | 
	https://arxiv.org/abs/1806.03589v2 | 
	https://arxiv.org/pdf/1806.03589v2.pdf | 
	https://github.com/avalonstrel/GatedConvolution_pytorch | false | false | false | 
	pytorch | 
| 
	https://paperswithcode.com/paper/semi-supervised-deep-learning-for-fully | 
	Semi-Supervised Deep Learning for Fully Convolutional Networks | 
	1703.06000 | 
	http://arxiv.org/abs/1703.06000v2 | 
	http://arxiv.org/pdf/1703.06000v2.pdf | 
	https://github.com/bumuckl/SemiSupervisedDLForFCNs | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/on-learning-paradigms-for-the-travelling | 
	On Learning Paradigms for the Travelling Salesman Problem | 
	1910.07210 | 
	https://arxiv.org/abs/1910.07210v2 | 
	https://arxiv.org/pdf/1910.07210v2.pdf | 
	https://github.com/chaitjo/graph-convnet-tsp | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/recurrent-neural-networks-for-polyphonic | 
	Recurrent Neural Networks for Polyphonic Sound Event Detection in Real Life Recordings | 
	1604.00861 | 
	http://arxiv.org/abs/1604.00861v1 | 
	http://arxiv.org/pdf/1604.00861v1.pdf | 
	https://github.com/yardencsGitHub/tweetynet | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for | 
	An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition | 
	1507.05717 | 
	http://arxiv.org/abs/1507.05717v1 | 
	http://arxiv.org/pdf/1507.05717v1.pdf | 
	https://github.com/wacr2008/tensorflow_crnn | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/ultra-lightweight-image-super-resolution-with | 
	Multi-Attention Based Ultra Lightweight Image Super-Resolution | 
	2008.12912 | 
	https://arxiv.org/abs/2008.12912v2 | 
	https://arxiv.org/pdf/2008.12912v2.pdf | 
	https://github.com/AbdulMoqeet/MAFFSRN | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/a-computational-analysis-of-financial-and | 
	A Computational Analysis of Financial and Environmental Narratives within Financial Reports and its Value for Investors | null | 
	https://aclanthology.org/2020.fnp-1.31 | 
	https://aclanthology.org/2020.fnp-1.31.pdf | 
	https://github.com/forgefin/fin-env-narrative | true | true | false | 
	tf | 
| 
	https://paperswithcode.com/paper/distributed-control-of-descriptor-networks-a | 
	Distributed Control of Descriptor Networks: A Convex Procedure for Augmented Sparsity | 
	2109.05954 | 
	https://arxiv.org/abs/2109.05954v9 | 
	https://arxiv.org/pdf/2109.05954v9.pdf | 
	https://github.com/AndreiSperila/CONPRAS | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/finding-archetypal-spaces-for-data-using | 
	Finding Archetypal Spaces Using Neural Networks | 
	1901.09078 | 
	https://arxiv.org/abs/1901.09078v2 | 
	https://arxiv.org/pdf/1901.09078v2.pdf | 
	https://github.com/KrishnaswamyLab/AAnet | true | true | true | 
	tf | 
| 
	https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large | 
	Very Deep Convolutional Networks for Large-Scale Image Recognition | 
	1409.1556 | 
	http://arxiv.org/abs/1409.1556v6 | 
	http://arxiv.org/pdf/1409.1556v6.pdf | 
	https://github.com/raferguson/CNN-Profile-Picture | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/adversarial-learning-for-semi-supervised | 
	Adversarial Learning for Semi-Supervised Semantic Segmentation | 
	1802.07934 | 
	http://arxiv.org/abs/1802.07934v2 | 
	http://arxiv.org/pdf/1802.07934v2.pdf | 
	https://github.com/hfslyc/AdvSemiSeg | true | true | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/semi-supervised-classification-with-graph | 
	Semi-Supervised Classification with Graph Convolutional Networks | 
	1609.02907 | 
	http://arxiv.org/abs/1609.02907v4 | 
	http://arxiv.org/pdf/1609.02907v4.pdf | 
	https://github.com/selmiss/gp-tlstgcn | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/tensor-renormalization-group-approach-to-2d | 
	Tensor renormalization group approach to 2D classical lattice models | 
	cond-mat/0611687 | 
	https://arxiv.org/abs/cond-mat/0611687v2 | 
	https://arxiv.org/pdf/cond-mat/0611687v2.pdf | 
	https://github.com/mhauru/abeliantensors | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/rotation-method-for-accelerating-multiple | 
	Rotation method for accelerating multiple-spherical Bessel function integrals against a numerical source function | 
	1912.00065 | 
	https://arxiv.org/abs/1912.00065v1 | 
	https://arxiv.org/pdf/1912.00065v1.pdf | 
	https://github.com/eelregit/sbf_rotation | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/shared-representational-geometry-across | 
	Shared Representational Geometry Across Neural Networks | 
	1811.11684 | 
	http://arxiv.org/abs/1811.11684v2 | 
	http://arxiv.org/pdf/1811.11684v2.pdf | 
	https://github.com/qihongl/nnsrm-neurips18 | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/openfermion-the-electronic-structure-package | 
	OpenFermion: The Electronic Structure Package for Quantum Computers | 
	1710.07629 | 
	http://arxiv.org/abs/1710.07629v3 | 
	http://arxiv.org/pdf/1710.07629v3.pdf | 
	https://github.com/quantumlib/OpenFermion-Cirq | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/least-dependent-component-analysis-based-on | 
	Least Dependent Component Analysis Based on Mutual Information | 
	physics/0405044 | 
	https://arxiv.org/abs/physics/0405044v2 | 
	https://arxiv.org/pdf/physics/0405044v2.pdf | 
	https://github.com/nordavinden/Mutual-Information-ICA | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/estimating-mutual-information | 
	Estimating Mutual Information | 
	cond-mat/0305641 | 
	https://arxiv.org/abs/cond-mat/0305641v1 | 
	https://arxiv.org/pdf/cond-mat/0305641v1.pdf | 
	https://github.com/nordavinden/Mutual-Information-ICA | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/a-style-based-generator-architecture-for | 
	A Style-Based Generator Architecture for Generative Adversarial Networks | 
	1812.04948 | 
	http://arxiv.org/abs/1812.04948v3 | 
	http://arxiv.org/pdf/1812.04948v3.pdf | 
	https://github.com/pfnet-research/chainer-stylegan | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/fracbnn-accurate-and-fpga-efficient-binary | 
	FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations | 
	2012.12206 | 
	https://arxiv.org/abs/2012.12206v1 | 
	https://arxiv.org/pdf/2012.12206v1.pdf | 
	https://github.com/ychzhang/fracbnn | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/150501303 | 
	XTreePath: A generalization of XPath to handle real world structural variation | 
	1505.01303 | 
	http://arxiv.org/abs/1505.01303v3 | 
	http://arxiv.org/pdf/1505.01303v3.pdf | 
	https://github.com/ieee8023/XTreePath | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/noise2noise-learning-image-restoration | 
	Noise2Noise: Learning Image Restoration without Clean Data | 
	1803.04189 | 
	http://arxiv.org/abs/1803.04189v3 | 
	http://arxiv.org/pdf/1803.04189v3.pdf | 
	https://github.com/itsuki8914/simply-noise2noise-TF | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/pointhop-an-explainable-machine-learning | 
	PointHop: An Explainable Machine Learning Method for Point Cloud Classification | 
	1907.12766 | 
	https://arxiv.org/abs/1907.12766v2 | 
	https://arxiv.org/pdf/1907.12766v2.pdf | 
	https://github.com/minzhang-1/PointHop | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/end-to-end-recovery-of-human-shape-and-pose | 
	End-to-end Recovery of Human Shape and Pose | 
	1712.06584 | 
	http://arxiv.org/abs/1712.06584v2 | 
	http://arxiv.org/pdf/1712.06584v2.pdf | 
	https://github.com/MandyMo/pytorch_HMR | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/a-style-based-generator-architecture-for | 
	A Style-Based Generator Architecture for Generative Adversarial Networks | 
	1812.04948 | 
	http://arxiv.org/abs/1812.04948v3 | 
	http://arxiv.org/pdf/1812.04948v3.pdf | 
	https://github.com/itsuki8914/stylegan-TensorFlow | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/sparsh-amg-a-library-for-hybrid-cpu-gpu | 
	SParSH-AMG: A library for hybrid CPU-GPU algebraic multigrid and preconditioned iterative methods | 
	2007.00056 | 
	https://arxiv.org/abs/2007.00056v1 | 
	https://arxiv.org/pdf/2007.00056v1.pdf | 
	https://github.com/cmgcds/SParSH-AMG | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/the-comparison-of-wiktionary-thesauri | 
	The comparison of Wiktionary thesauri transformed into the machine-readable format | 
	1006.5040 | 
	http://arxiv.org/abs/1006.5040v1 | 
	http://arxiv.org/pdf/1006.5040v1.pdf | 
	https://github.com/componavt/wikokit | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/deep-high-resolution-representation-learning | 
	Deep High-Resolution Representation Learning for Human Pose Estimation | 
	1902.09212 | 
	http://arxiv.org/abs/1902.09212v1 | 
	http://arxiv.org/pdf/1902.09212v1.pdf | 
	https://github.com/HRNet/HRNet-Image-Classification | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/high-resolution-representations-for-labeling | 
	High-Resolution Representations for Labeling Pixels and Regions | 
	1904.04514 | 
	http://arxiv.org/abs/1904.04514v1 | 
	http://arxiv.org/pdf/1904.04514v1.pdf | 
	https://github.com/HRNet/HRNet-Image-Classification | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/faldoi-a-new-minimization-strategy-for-large | 
	FALDOI: A new minimization strategy for large displacement variational optical flow | 
	1602.08960 | 
	http://arxiv.org/abs/1602.08960v3 | 
	http://arxiv.org/pdf/1602.08960v3.pdf | 
	https://github.com/fperezgamonal/faldoi-ipol | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/metadata-embeddings-for-user-and-item-cold | 
	Metadata Embeddings for User and Item Cold-start Recommendations | 
	1507.08439 | 
	http://arxiv.org/abs/1507.08439v1 | 
	http://arxiv.org/pdf/1507.08439v1.pdf | 
	https://github.com/lyst/lightfm-paper | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/unified-treatment-of-the-asymptotics-of | 
	Unified treatment of the asymptotics of asymmetric kernel density estimators | 
	1512.03188 | 
	http://arxiv.org/abs/1512.03188v1 | 
	http://arxiv.org/pdf/1512.03188v1.pdf | 
	https://github.com/tommyod/KDEpy | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/road-extraction-by-deep-residual-u-net | 
	Road Extraction by Deep Residual U-Net | 
	1711.10684 | 
	http://arxiv.org/abs/1711.10684v1 | 
	http://arxiv.org/pdf/1711.10684v1.pdf | 
	https://github.com/Kaido0/Brain-Tissue-Segment-Keras | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/realtime-multi-person-2d-pose-estimation | 
	Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields | 
	1611.08050 | 
	http://arxiv.org/abs/1611.08050v2 | 
	http://arxiv.org/pdf/1611.08050v2.pdf | 
	https://github.com/lncarter/Openpose | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/hand-keypoint-detection-in-single-images | 
	Hand Keypoint Detection in Single Images using Multiview Bootstrapping | 
	1704.07809 | 
	http://arxiv.org/abs/1704.07809v1 | 
	http://arxiv.org/pdf/1704.07809v1.pdf | 
	https://github.com/lncarter/Openpose | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/convolutional-pose-machines | 
	Convolutional Pose Machines | 
	1602.00134 | 
	http://arxiv.org/abs/1602.00134v4 | 
	http://arxiv.org/pdf/1602.00134v4.pdf | 
	https://github.com/lncarter/Openpose | false | false | true | 
	pytorch | 
| 
	https://paperswithcode.com/paper/exploiting-kernel-sparsity-and-entropy-for | 
	Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression | 
	1812.04368 | 
	http://arxiv.org/abs/1812.04368v2 | 
	http://arxiv.org/pdf/1812.04368v2.pdf | 
	https://github.com/yuchaoli/KSE | true | true | false | 
	pytorch | 
| 
	https://paperswithcode.com/paper/blockchain-and-trusted-computing-problems | 
	Blockchain and Trusted Computing: Problems, Pitfalls, and a Solution for Hyperledger Fabric | 
	1805.08541 | 
	http://arxiv.org/abs/1805.08541v1 | 
	http://arxiv.org/pdf/1805.08541v1.pdf | 
	https://github.com/hyperledger-labs/fabric-private-chaincode | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/emotionflow-capture-the-dialogue-level | 
	EmotionFlow: Capture the Dialogue Level Emotion Transitions | null | 
	https://github.com/fpcsong/emotionflow/blob/master/EmotionFlow.pdf | 
	https://github.com/fpcsong/emotionflow/blob/master/EmotionFlow.pdf | 
	https://github.com/fpcsong/emotionflow | false | false | false | 
	pytorch | 
| 
	https://paperswithcode.com/paper/neural-code-search-revisited-enhancing-code | 
	Neural Code Search Revisited: Enhancing Code Snippet Retrieval through Natural Language Intent | 
	2008.12193 | 
	https://arxiv.org/abs/2008.12193v1 | 
	https://arxiv.org/pdf/2008.12193v1.pdf | 
	https://github.com/nokia/codesearch | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/pytorch-biggraph-a-large-scale-graph | 
	PyTorch-BigGraph: A Large-scale Graph Embedding System | 
	1903.12287 | 
	http://arxiv.org/abs/1903.12287v3 | 
	http://arxiv.org/pdf/1903.12287v3.pdf | 
	https://github.com/facebookresearch/PyTorch-BigGraph | false | true | false | 
	pytorch | 
| 
	https://paperswithcode.com/paper/end-to-end-memory-networks | 
	End-To-End Memory Networks | 
	1503.08895 | 
	http://arxiv.org/abs/1503.08895v5 | 
	http://arxiv.org/pdf/1503.08895v5.pdf | 
	https://github.com/aadil-srivastava01/End-To-End-Memory-Networks | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/squeezenet-alexnet-level-accuracy-with-50x | 
	SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size | 
	1602.07360 | 
	http://arxiv.org/abs/1602.07360v4 | 
	http://arxiv.org/pdf/1602.07360v4.pdf | 
	https://github.com/Kaido0/Brain-Tissue-Segment-Keras | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/unsupervised-pixel-level-domain-adaptation | 
	Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks | 
	1612.05424 | 
	http://arxiv.org/abs/1612.05424v2 | 
	http://arxiv.org/pdf/1612.05424v2.pdf | 
	https://github.com/tensorflow/models/tree/master/research/domain_adaptation | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/reliable-local-explanations-for-machine | 
	Reliable Local Explanations for Machine Listening | 
	2005.07788 | 
	https://arxiv.org/abs/2005.07788v1 | 
	https://arxiv.org/pdf/2005.07788v1.pdf | 
	https://github.com/saum25/local_exp_robustness | true | true | false | 
	tf | 
| 
	https://paperswithcode.com/paper/defense-against-adversarial-attacks-using | 
	Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser | 
	1712.02976 | 
	http://arxiv.org/abs/1712.02976v2 | 
	http://arxiv.org/pdf/1712.02976v2.pdf | 
	https://github.com/anishathalye/Guided-Denoise | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/conditional-generative-adversarial-nets | 
	Conditional Generative Adversarial Nets | 
	1411.1784 | 
	https://arxiv.org/abs/1411.1784v1 | 
	https://arxiv.org/pdf/1411.1784v1.pdf | 
	https://github.com/xingxingyoulei/infer_cgan_onnx/tree/master/research/cv/CGAN | false | false | false | 
	mindspore | 
| 
	https://paperswithcode.com/paper/a-practical-guide-to-randomized-matrix | 
	A Practical Guide to Randomized Matrix Computations with MATLAB Implementations | 
	1505.07570 | 
	http://arxiv.org/abs/1505.07570v6 | 
	http://arxiv.org/pdf/1505.07570v6.pdf | 
	https://github.com/wangshusen/RandMatrixMatlab | true | true | true | 
	none | 
| 
	https://paperswithcode.com/paper/plsrglm-partial-least-squares-linear-and | 
	plsRglm: Partial least squares linear and generalized linear regression for processing incomplete datasets by cross-validation and bootstrap techniques with R | 
	1810.01005 | 
	http://arxiv.org/abs/1810.01005v1 | 
	http://arxiv.org/pdf/1810.01005v1.pdf | 
	https://github.com/fbertran/plsRglm | false | false | true | 
	none | 
| 
	https://paperswithcode.com/paper/a-multilayer-convolutional-encoder-decoder | 
	A Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction | 
	1801.08831 | 
	http://arxiv.org/abs/1801.08831v1 | 
	http://arxiv.org/pdf/1801.08831v1.pdf | 
	https://github.com/seaweiqing/neuraltalk_plus_charcnn | false | false | true | 
	tf | 
| 
	https://paperswithcode.com/paper/unsupervised-domain-adaptation-for-medical | 
	Unsupervised domain adaptation for medical imaging segmentation with self-ensembling | 
	1811.06042 | 
	http://arxiv.org/abs/1811.06042v2 | 
	http://arxiv.org/pdf/1811.06042v2.pdf | 
	https://github.com/neuropoly/domainadaptation | true | true | false | 
	pytorch | 
| 
	https://paperswithcode.com/paper/overlapping-community-detection-at-scale-a | 
	Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach | null | 
	https://dl.acm.org/citation.cfm?id=2433471 | 
	http://infolab.stanford.edu/~crucis/pubs/paper-nmfagm.pdf | 
	https://github.com/benedekrozemberczki/karateclub | false | false | false | 
	none | 
| 
	https://paperswithcode.com/paper/the-loss-surfaces-of-multilayer-networks | 
	The Loss Surfaces of Multilayer Networks | 
	1412.0233 | 
	http://arxiv.org/abs/1412.0233v3 | 
	http://arxiv.org/pdf/1412.0233v3.pdf | 
	https://github.com/jchunn/Ambition | false | false | true | 
	tf | 
			Subsets and Splits
				
	
				
			
				
Framework Repo Connectivity Analysis
												Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
													
Deduplicated Paper-Code Links
												This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
													
Paper Repo Counts & Distribution
												Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
													
Quantum Papers with Code Links
												Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
													
Financial Stock Price Prediction
												Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
													
Search for YOLO Links
												Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
													
Prompt Optimization and Personalization
												Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.
													
