paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/compositional-coding-capsule-network-with-k
|
Compositional Coding Capsule Network with K-Means Routing for Text Classification
|
1810.09177
|
https://arxiv.org/abs/1810.09177v5
|
https://arxiv.org/pdf/1810.09177v5.pdf
|
https://github.com/leftthomas/CCCapsNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bisenet-bilateral-segmentation-network-for
|
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
|
1808.00897
|
http://arxiv.org/abs/1808.00897v1
|
http://arxiv.org/pdf/1808.00897v1.pdf
|
https://github.com/kirilcvetkov92/Semantic-Segmentation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/chinese-opinion-role-labeling-with-corpus
|
Chinese Opinion Role Labeling with Corpus Translation: A Pivot Study
| null |
https://aclanthology.org/2021.emnlp-main.796
|
https://aclanthology.org/2021.emnlp-main.796.pdf
|
https://github.com/zenrran/chineseorl-with-corpus-translation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dank-or-not-analyzing-and-predicting-the
|
Dank or Not? -- Analyzing and Predicting the Popularity of Memes on Reddit
|
2011.14326
|
https://arxiv.org/abs/2011.14326v2
|
https://arxiv.org/pdf/2011.14326v2.pdf
|
https://github.com/dimaTrinh/dank_data
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/jimheaton/Ultra96_ML_Embedded_Workshop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-structured-self-attentive-sentence
|
A Structured Self-attentive Sentence Embedding
|
1703.03130
|
http://arxiv.org/abs/1703.03130v1
|
http://arxiv.org/pdf/1703.03130v1.pdf
|
https://github.com/natel9178/transformer-refork
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-degree-linkage-agglomerative-clustering
|
Graph Degree Linkage: Agglomerative Clustering on a Directed Graph
|
1208.5092
|
http://arxiv.org/abs/1208.5092v1
|
http://arxiv.org/pdf/1208.5092v1.pdf
|
https://github.com/waynezhanghk/gactoolbox
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/deeperase-weakly-supervised-ink-artifact
|
DeepErase: Weakly Supervised Ink Artifact Removal in Document Text Images
|
1910.07070
|
https://arxiv.org/abs/1910.07070v3
|
https://arxiv.org/pdf/1910.07070v3.pdf
|
https://github.com/Guillem96/deep-erase
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/sequence-modeling-via-segmentations
|
Sequence Modeling via Segmentations
|
1702.07463
|
http://arxiv.org/abs/1702.07463v7
|
http://arxiv.org/pdf/1702.07463v7.pdf
|
https://github.com/posenhuang/NPMT
| true
| true
| true
|
torch
|
https://paperswithcode.com/paper/pointrend-image-segmentation-as-rendering
|
PointRend: Image Segmentation as Rendering
|
1912.08193
|
https://arxiv.org/abs/1912.08193v2
|
https://arxiv.org/pdf/1912.08193v2.pdf
|
https://github.com/JamesQFreeman/PointRend
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/holophrasm-a-neural-automated-theorem-prover
|
Holophrasm: a neural Automated Theorem Prover for higher-order logic
|
1608.02644
|
http://arxiv.org/abs/1608.02644v2
|
http://arxiv.org/pdf/1608.02644v2.pdf
|
https://github.com/giomasce/mmpp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cloud-based-quadratic-optimization-with
|
Cloud-based Quadratic Optimization with Partially Homomorphic Encryption
|
1809.02267
|
http://arxiv.org/abs/1809.02267v1
|
http://arxiv.org/pdf/1809.02267v1.pdf
|
https://github.com/andreea-alexandru/QPHE
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/conditional-random-fields-as-recurrent-neural-1
|
Conditional Random Fields as Recurrent Neural Networks
|
1502.03240
|
http://arxiv.org/abs/1502.03240v3
|
http://arxiv.org/pdf/1502.03240v3.pdf
|
https://github.com/liyin2015/superpixel_crfasrnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact
|
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
|
1602.07261
|
http://arxiv.org/abs/1602.07261v2
|
http://arxiv.org/pdf/1602.07261v2.pdf
|
https://github.com/92coorob/facerec2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/predicting-and-explaining-human-semantic
|
Predicting and Explaining Human Semantic Search in a Cognitive Model
|
1711.11125
|
http://arxiv.org/abs/1711.11125v1
|
http://arxiv.org/pdf/1711.11125v1.pdf
|
https://github.com/mkduer/semantic-fluency-nn
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/maximum-likelihood-estimation-of-quantum
|
Maximum-likelihood estimation of quantum measurement
|
quant-ph/0101027
|
https://arxiv.org/abs/quant-ph/0101027v2
|
https://arxiv.org/pdf/quant-ph/0101027v2.pdf
|
https://github.com/fbm2718/QREM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/variational-continual-learning
|
Variational Continual Learning
|
1710.10628
|
http://arxiv.org/abs/1710.10628v3
|
http://arxiv.org/pdf/1710.10628v3.pdf
|
https://github.com/pihey1995/VariationalContinualLearning
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/190205027
|
Proximity Queries for Absolutely Continuous Parametric Curves
|
1902.05027
|
http://arxiv.org/abs/1902.05027v2
|
http://arxiv.org/pdf/1902.05027v2.pdf
|
https://github.com/arlk/CurveProximityQueries.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/discovering-human-interactions-with-novel
|
Discovering Human Interactions With Novel Objects via Zero-Shot Learning
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Discovering_Human_Interactions_With_Novel_Objects_via_Zero-Shot_Learning_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_Discovering_Human_Interactions_With_Novel_Objects_via_Zero-Shot_Learning_CVPR_2020_paper.pdf
|
https://github.com/scwangdyd/zero_shot_hoi
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adversarial-transformation-networks-learning
|
Adversarial Transformation Networks: Learning to Generate Adversarial Examples
|
1703.09387
|
http://arxiv.org/abs/1703.09387v1
|
http://arxiv.org/pdf/1703.09387v1.pdf
|
https://github.com/pfnet-research/nips17-adversarial-attack
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/stroke-based-artistic-rendering-agent-with
|
Learning to Paint With Model-based Deep Reinforcement Learning
|
1903.04411
|
https://arxiv.org/abs/1903.04411v3
|
https://arxiv.org/pdf/1903.04411v3.pdf
|
https://github.com/hzwer/LearningToPaint
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/convmlp-hierarchical-convolutional-mlps-for
|
ConvMLP: Hierarchical Convolutional MLPs for Vision
|
2109.04454
|
https://arxiv.org/abs/2109.04454v2
|
https://arxiv.org/pdf/2109.04454v2.pdf
|
https://github.com/shinya7y/UniverseNet
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/medoids-in-almost-linear-time-via-multi-armed
|
Medoids in almost linear time via multi-armed bandits
|
1711.00817
|
http://arxiv.org/abs/1711.00817v3
|
http://arxiv.org/pdf/1711.00817v3.pdf
|
https://github.com/bagavi/Meddit
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/incorporating-copying-mechanism-in-sequence
|
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
|
1603.06393
|
http://arxiv.org/abs/1603.06393v3
|
http://arxiv.org/pdf/1603.06393v3.pdf
|
https://github.com/allenai/allennlp-models
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/what-uncertainties-do-we-need-in-bayesian
|
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
|
1703.04977
|
http://arxiv.org/abs/1703.04977v2
|
http://arxiv.org/pdf/1703.04977v2.pdf
|
https://github.com/huyng/incertae
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/vilbert-pretraining-task-agnostic
|
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
|
1908.02265
|
https://arxiv.org/abs/1908.02265v1
|
https://arxiv.org/pdf/1908.02265v1.pdf
|
https://github.com/allenai/allennlp-models
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/pfld-a-practical-facial-landmark-detector
|
PFLD: A Practical Facial Landmark Detector
|
1902.10859
|
http://arxiv.org/abs/1902.10859v2
|
http://arxiv.org/pdf/1902.10859v2.pdf
|
https://github.com/Ontheway361/pfld-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/trackerbots-software-in-the-loop-study-of
|
TrackerBots: Software in the Loop Study of Quad-Copter Robots for Locating Radio-tags in a 3D Space
| null |
https://ssl.linklings.net/conferences/acra/acra2018_proceedings/views/by_sub_type.html
|
https://ssl.linklings.net/conferences/acra/acra2018_proceedings/views/includes/files/pap118s1-file1.pdf
|
https://github.com/AdelaideAuto-IDLab/TrackerBots
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/polysemy-deciphering-network-for-robust-human
|
Polysemy Deciphering Network for Robust Human-Object Interaction Detection
|
2008.02918
|
https://arxiv.org/abs/2008.02918v3
|
https://arxiv.org/pdf/2008.02918v3.pdf
|
https://github.com/MuchHair/PD-Net
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-local-block-coordinate-descent-algorithm-1
|
A Local Block Coordinate Descent Algorithm for the CSC Model
| null |
http://openaccess.thecvf.com/content_CVPR_2019/html/Zisselman_A_Local_Block_Coordinate_Descent_Algorithm_for_the_CSC_Model_CVPR_2019_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zisselman_A_Local_Block_Coordinate_Descent_Algorithm_for_the_CSC_Model_CVPR_2019_paper.pdf
|
https://github.com/EvZissel/LoBCoD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predicting-slice-to-volume-transformation-in
|
Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion
|
1702.08891
|
http://arxiv.org/abs/1702.08891v2
|
http://arxiv.org/pdf/1702.08891v2.pdf
|
https://github.com/farrell236/SVRnet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/computing-cnn-loss-and-gradients-for-pose
|
Computing CNN Loss and Gradients for Pose Estimation with Riemannian Geometry
|
1805.01026
|
http://arxiv.org/abs/1805.01026v3
|
http://arxiv.org/pdf/1805.01026v3.pdf
|
https://github.com/farrell236/SVRnet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-implicit-bias-of-depth-how-incremental
|
The Implicit Bias of Depth: How Incremental Learning Drives Generalization
|
1909.12051
|
https://arxiv.org/abs/1909.12051v2
|
https://arxiv.org/pdf/1909.12051v2.pdf
|
https://github.com/dsgissin/Incremental-Learning
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/classifying-idiomatic-and-literal-expressions-2
|
Classifying Idiomatic and Literal Expressions Using Topic Models and Intensity of Emotions
|
1802.09961
|
http://arxiv.org/abs/1802.09961v1
|
http://arxiv.org/pdf/1802.09961v1.pdf
|
https://github.com/bondfeld/BNC_idioms
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/temporal-generative-adversarial-nets-with
|
Temporal Generative Adversarial Nets with Singular Value Clipping
|
1611.06624
|
http://arxiv.org/abs/1611.06624v3
|
http://arxiv.org/pdf/1611.06624v3.pdf
|
https://github.com/pfnet-research/tgan
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pcpnet-learning-local-shape-properties-from
|
PCPNET: Learning Local Shape Properties from Raw Point Clouds
|
1710.04954
|
http://arxiv.org/abs/1710.04954v4
|
http://arxiv.org/pdf/1710.04954v4.pdf
|
https://github.com/abdullahozer11/Segmentation-and-Classification-of-Objects-in-Point-Clouds
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/bayesian-estimation-of-a-semiparametric
|
Bayesian estimation of a semiparametric recurrent event model with applications to the penetrance estimation of multiple primary cancers in Li-Fraumeni Syndrome
|
1804.06883
|
http://arxiv.org/abs/1804.06883v1
|
http://arxiv.org/pdf/1804.06883v1.pdf
|
https://github.com/wwylab/MPC
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/aesthetic-driven-image-enhancement-by
|
Aesthetic-Driven Image Enhancement by Adversarial Learning
|
1707.05251
|
http://arxiv.org/abs/1707.05251v2
|
http://arxiv.org/pdf/1707.05251v2.pdf
|
https://github.com/dannysdeng/EnhanceGAN
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/sampling-errors-in-nested-sampling-parameter
|
Sampling Errors in Nested Sampling Parameter Estimation
|
1703.09701
|
http://arxiv.org/abs/1703.09701v2
|
http://arxiv.org/pdf/1703.09701v2.pdf
|
https://github.com/ejhigson/perfectns
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/keras-team/keras-io/blob/master/examples/generative/vq_vae.py
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/all-word-embeddings-from-one-embedding
|
All Word Embeddings from One Embedding
|
2004.12073
|
https://arxiv.org/abs/2004.12073v3
|
https://arxiv.org/pdf/2004.12073v3.pdf
|
https://github.com/takase/alone_seq2seq
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-chemical-design-using-a-data-driven
|
Automatic chemical design using a data-driven continuous representation of molecules
|
1610.02415
|
http://arxiv.org/abs/1610.02415v3
|
http://arxiv.org/pdf/1610.02415v3.pdf
|
https://github.com/aspuru-guzik-group/chemical_vae
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/uncertainty-estimates-and-multi-hypotheses
|
Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow
|
1802.07095
|
http://arxiv.org/abs/1802.07095v4
|
http://arxiv.org/pdf/1802.07095v4.pdf
|
https://github.com/lmb-freiburg/netdef-docker
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-kinetics-human-action-video-dataset
|
The Kinetics Human Action Video Dataset
|
1705.06950
|
http://arxiv.org/abs/1705.06950v1
|
http://arxiv.org/pdf/1705.06950v1.pdf
|
https://github.com/deepmind/kinetics-i3d
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/piyush2896/CNN-Text-Classifier
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/capsdemm-capsule-network-for-detection-of
|
CapsDeMM: Capsule network for Detection of Munro's Microabscess in skin biopsy images
|
1808.06428
|
http://arxiv.org/abs/1808.06428v2
|
http://arxiv.org/pdf/1808.06428v2.pdf
|
https://github.com/Anabik/CapsDeMM
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/stgat-modeling-spatial-temporal-interactions
|
STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction
| null |
http://openaccess.thecvf.com/content_ICCV_2019/html/Huang_STGAT_Modeling_Spatial-Temporal_Interactions_for_Human_Trajectory_Prediction_ICCV_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_STGAT_Modeling_Spatial-Temporal_Interactions_for_Human_Trajectory_Prediction_ICCV_2019_paper.pdf
|
https://github.com/huang-xx/STGAT
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-agent-active-perception-with-prediction
|
Multi-agent active perception with prediction rewards
|
2010.11835
|
https://arxiv.org/abs/2010.11835v1
|
https://arxiv.org/pdf/2010.11835v1.pdf
|
https://github.com/laurimi/multiagent-prediction-reward
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/singing-voice-separation-using-a-deep
|
Singing Voice Separation Using a Deep Convolutional Neural Network Trained by Ideal Binary Mask and Cross Entropy
|
1812.01278
|
http://arxiv.org/abs/1812.01278v1
|
http://arxiv.org/pdf/1812.01278v1.pdf
|
https://github.com/EdwardLin2014/CNN-with-IBM-for-Singing-Voice-Separation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/catalog-of-quasars-from-the-kilo-degree
|
Catalog of quasars from the Kilo-Degree Survey Data Release 3
|
1812.03084
|
http://arxiv.org/abs/1812.03084v2
|
http://arxiv.org/pdf/1812.03084v2.pdf
|
https://github.com/snakoneczny/kids-quasars
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/pointnet-deep-learning-on-point-sets-for-3d
|
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
1612.00593
|
http://arxiv.org/abs/1612.00593v2
|
http://arxiv.org/pdf/1612.00593v2.pdf
|
https://github.com/abdullahozer11/Segmentation-and-Classification-of-Objects-in-Point-Clouds
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/q-map-a-convolutional-approach-for-goal
|
Scaling All-Goals Updates in Reinforcement Learning Using Convolutional Neural Networks
|
1810.02927
|
https://arxiv.org/abs/1810.02927v2
|
https://arxiv.org/pdf/1810.02927v2.pdf
|
https://github.com/yl3829/Q-map
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/controlling-perceptual-factors-in-neural
|
Controlling Perceptual Factors in Neural Style Transfer
|
1611.07865
|
http://arxiv.org/abs/1611.07865v2
|
http://arxiv.org/pdf/1611.07865v2.pdf
|
https://github.com/dstein64/pastiche
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spatially-localized-atlas-network-tiles
|
Spatially Localized Atlas Network Tiles Enables 3D Whole Brain Segmentation from Limited Data
|
1806.00546
|
http://arxiv.org/abs/1806.00546v2
|
http://arxiv.org/pdf/1806.00546v2.pdf
|
https://github.com/MASILab/SLANTbrainSeg
| true
| true
| true
|
caffe2
|
https://paperswithcode.com/paper/3d-whole-brain-segmentation-using-spatially
|
3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles
|
1903.12152
|
http://arxiv.org/abs/1903.12152v1
|
http://arxiv.org/pdf/1903.12152v1.pdf
|
https://github.com/MASILab/SLANTbrainSeg
| true
| true
| true
|
caffe2
|
https://paperswithcode.com/paper/stackgan-realistic-image-synthesis-with
|
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
|
1710.10916
|
http://arxiv.org/abs/1710.10916v3
|
http://arxiv.org/pdf/1710.10916v3.pdf
|
https://github.com/hanzhanggit/StackGAN-v2
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/position-detection-and-direction-prediction
|
Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network
|
1806.04828
|
http://arxiv.org/abs/1806.04828v2
|
http://arxiv.org/pdf/1806.04828v2.pdf
|
https://github.com/DetectionTeamUCAS/RRPN_Faster_RCNN_Tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-uncertainty-with-artificial-neural
|
Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes
|
2105.05559
|
https://arxiv.org/abs/2105.05559v1
|
https://arxiv.org/pdf/2105.05559v1.pdf
|
https://github.com/hansweytjens/uncertainty-remaining_time
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/batch-stationary-distribution-estimation
|
Batch Stationary Distribution Estimation
|
2003.00722
|
https://arxiv.org/abs/2003.00722v1
|
https://arxiv.org/pdf/2003.00722v1.pdf
|
https://github.com/bmazoure/batch_stationary_distribution
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/IBM/MAX-Text-Sentiment-Classifier
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/not-all-claims-are-created-equal-choosing-the
|
Not All Claims are Created Equal: Choosing the Right Statistical Approach to Assess Hypotheses
|
1911.03850
|
https://arxiv.org/abs/1911.03850v3
|
https://arxiv.org/pdf/1911.03850v3.pdf
|
https://github.com/allenai/HyBayes
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-cognitive-preferences-and-the-plausibility
|
On Cognitive Preferences and the Plausibility of Rule-based Models
|
1803.01316
|
http://arxiv.org/abs/1803.01316v4
|
http://arxiv.org/pdf/1803.01316v4.pdf
|
https://github.com/kliegr/rule-length-project
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/BigRedT/info-ground
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-regularized-framework-for-sparse-and
|
A Regularized Framework for Sparse and Structured Neural Attention
|
1705.07704
|
http://arxiv.org/abs/1705.07704v3
|
http://arxiv.org/pdf/1705.07704v3.pdf
|
https://github.com/vene/sparse-structured-attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-moment-matching-networks
|
Generative Moment Matching Networks
|
1502.02761
|
http://arxiv.org/abs/1502.02761v1
|
http://arxiv.org/pdf/1502.02761v1.pdf
|
https://github.com/Abhipanda4/GMMN-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ned-an-inter-graph-node-metric-based-on-edit
|
NED: An Inter-Graph Node Metric Based On Edit Distance
|
1602.02358
|
http://arxiv.org/abs/1602.02358v3
|
http://arxiv.org/pdf/1602.02358v3.pdf
|
https://github.com/zhuhaohan/NED
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/semi-supervised-learning-with-deep-generative-1
|
Semi-Supervised Learning with Deep Generative Models
|
1406.5298
|
http://arxiv.org/abs/1406.5298v2
|
http://arxiv.org/pdf/1406.5298v2.pdf
|
https://github.com/candy4869/2014
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/instance-aware-image-to-image-translation
|
Instance-aware Image-to-Image Translation
| null |
https://openreview.net/forum?id=ryxwJhC9YX
|
https://openreview.net/pdf?id=ryxwJhC9YX
|
https://github.com/sangwoomo/instagan
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
|
mixup: Beyond Empirical Risk Minimization
|
1710.09412
|
http://arxiv.org/abs/1710.09412v2
|
http://arxiv.org/pdf/1710.09412v2.pdf
|
https://github.com/transcendentsky/mixup
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-feature-selection-with-adaptive
|
Unsupervised Feature Selection with Adaptive Structure Learning
|
1504.00736
|
http://arxiv.org/abs/1504.00736v1
|
http://arxiv.org/pdf/1504.00736v1.pdf
|
https://github.com/csliangdu/FSASL
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-for-dialogue
|
Deep Reinforcement Learning for Dialogue Generation
|
1606.01541
|
http://arxiv.org/abs/1606.01541v4
|
http://arxiv.org/pdf/1606.01541v4.pdf
|
https://github.com/tfolkman/deep-learning-experiments
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-architectures-for-learning-context
|
Deep Architectures for Learning Context-dependent Ranking Functions
|
1803.05796
|
http://arxiv.org/abs/1803.05796v2
|
http://arxiv.org/pdf/1803.05796v2.pdf
|
https://github.com/kiudee/cs-ranking
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/training-big-random-forests-with-little
|
Training Big Random Forests with Little Resources
|
1802.06394
|
http://arxiv.org/abs/1802.06394v1
|
http://arxiv.org/pdf/1802.06394v1.pdf
|
https://github.com/gieseke/woody
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/dgedon/CycleGAN-for-Emojis
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/cyclegan-face-off
|
CycleGAN Face-off
|
1712.03451
|
http://arxiv.org/abs/1712.03451v5
|
http://arxiv.org/pdf/1712.03451v5.pdf
|
https://github.com/ShangxuanWu/CycleGAN-Face-off
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/less-is-more-sampling-chemical-space-with
|
Less is more: sampling chemical space with active learning
|
1801.09319
|
http://arxiv.org/abs/1801.09319v2
|
http://arxiv.org/pdf/1801.09319v2.pdf
|
https://github.com/isayev/ANI1_dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-where-to-attend-like-a-human-driver
|
Learning Where to Attend Like a Human Driver
|
1611.08215
|
http://arxiv.org/abs/1611.08215v2
|
http://arxiv.org/pdf/1611.08215v2.pdf
|
https://github.com/francescosolera/dreyeving
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dense-distributions-from-sparse-samples
|
Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
|
1505.02065
|
http://arxiv.org/abs/1505.02065v6
|
http://arxiv.org/pdf/1505.02065v6.pdf
|
https://github.com/ypapanik/cgs_p
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/resnest-split-attention-networks
|
ResNeSt: Split-Attention Networks
|
2004.08955
|
https://arxiv.org/abs/2004.08955v2
|
https://arxiv.org/pdf/2004.08955v2.pdf
|
https://github.com/chongruo/detectron2-resnest
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/replication-issues-in-syntax-based-aspect
|
Replication issues in syntax-based aspect extraction for opinion mining
|
1701.01565
|
http://arxiv.org/abs/1701.01565v1
|
http://arxiv.org/pdf/1701.01565v1.pdf
|
https://github.com/epochx/opminreplicability
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/disentangling-noise-from-images-a-flow-based
|
Disentangling Noise from Images: A Flow-Based Image Denoising Neural Network
|
2105.04746
|
https://arxiv.org/abs/2105.04746v1
|
https://arxiv.org/pdf/2105.04746v1.pdf
|
https://github.com/Yang-Liu1082/FDN
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adaptive-graph-convolutional-recurrent
|
Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting
|
2007.02842
|
https://arxiv.org/abs/2007.02842v2
|
https://arxiv.org/pdf/2007.02842v2.pdf
|
https://github.com/LeiBAI/AGCRN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/variational-neural-machine-translation
|
Variational Neural Machine Translation
|
1605.07869
|
http://arxiv.org/abs/1605.07869v2
|
http://arxiv.org/pdf/1605.07869v2.pdf
|
https://github.com/DeepLearnXMU/VNMT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improved-network-robustness-with-adversary
|
Improved Network Robustness with Adversary Critic
|
1810.12576
|
http://arxiv.org/abs/1810.12576v1
|
http://arxiv.org/pdf/1810.12576v1.pdf
|
https://github.com/aam-at/adversary_critic
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/parsimonious-topic-models-with-salient-word
|
Parsimonious Topic Models with Salient Word Discovery
|
1401.6169
|
http://arxiv.org/abs/1401.6169v2
|
http://arxiv.org/pdf/1401.6169v2.pdf
|
https://github.com/hsoleimani/PTM
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/kernel-adaptive-metropolis-hastings
|
Kernel Adaptive Metropolis-Hastings
|
1307.5302
|
http://arxiv.org/abs/1307.5302v3
|
http://arxiv.org/pdf/1307.5302v3.pdf
|
https://github.com/karlnapf/kameleon-mcmc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/intent-based-radio-scheduler-for-ran-slicing-1
|
Intent-based Radio Scheduler for RAN Slicing: Learning to deal with different network scenarios
|
2501.00950
|
https://arxiv.org/abs/2501.00950v1
|
https://arxiv.org/pdf/2501.00950v1.pdf
|
https://github.com/lasseufpa/intent_radio_sched_multi_slice
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/improved-training-of-wasserstein-gans
|
Improved Training of Wasserstein GANs
|
1704.00028
|
http://arxiv.org/abs/1704.00028v3
|
http://arxiv.org/pdf/1704.00028v3.pdf
|
https://github.com/adler-j/bwgan
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/ssgd-a-safe-and-efficient-method-of-gradient
|
SSGD: A safe and efficient method of gradient descent
|
2012.02076
|
https://arxiv.org/abs/2012.02076v2
|
https://arxiv.org/pdf/2012.02076v2.pdf
|
https://github.com/duanjinhuan/SSGD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/finding-tiny-faces
|
Finding Tiny Faces
|
1612.04402
|
http://arxiv.org/abs/1612.04402v2
|
http://arxiv.org/pdf/1612.04402v2.pdf
|
https://github.com/cydonia999/Tiny_Faces_in_Tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/esrgan-enhanced-super-resolution-generative
|
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
|
1809.00219
|
http://arxiv.org/abs/1809.00219v2
|
http://arxiv.org/pdf/1809.00219v2.pdf
|
https://github.com/u7javed/Image-Enhancer-via-ESRGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/differentiable-quantum-architecture-search
|
Differentiable Quantum Architecture Search
|
2010.08561
|
https://arxiv.org/abs/2010.08561v2
|
https://arxiv.org/pdf/2010.08561v2.pdf
|
https://github.com/refraction-ray/tensorcircuit
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/rectangular-statistical-cartograms-in-r-the
|
Rectangular Statistical Cartograms in R: The recmap Package
|
1606.00464
|
http://arxiv.org/abs/1606.00464v2
|
http://arxiv.org/pdf/1606.00464v2.pdf
|
https://github.com/cpanse/recmap
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/proofwatch-watchlist-guidance-for-large
|
ProofWatch: Watchlist Guidance for Large Theories in E
|
1802.04007
|
http://arxiv.org/abs/1802.04007v2
|
http://arxiv.org/pdf/1802.04007v2.pdf
|
https://github.com/ai4reason/eprover-data
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/kolloldas/torchnlp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/cdesilv1/sc2_ai_cdes
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/efficient-statistical-classification-of
|
Efficient statistical classification of satellite measurements
|
1202.2194
|
http://arxiv.org/abs/1202.2194v4
|
http://arxiv.org/pdf/1202.2194v4.pdf
|
https://github.com/tommyod/KDEpy
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/samplernn-an-unconditional-end-to-end-neural
|
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
|
1612.07837
|
http://arxiv.org/abs/1612.07837v2
|
http://arxiv.org/pdf/1612.07837v2.pdf
|
https://github.com/dada-bots/dadabots_sampleRNN
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/a-framework-for-evaluation-of-composite
|
A Framework for Evaluation of Composite Memento Temporal Coherence
|
1402.0928
|
http://arxiv.org/abs/1402.0928v3
|
http://arxiv.org/pdf/1402.0928v3.pdf
|
https://github.com/wikimedia/mediawiki-extensions-Memento
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/adversarial-feature-learning
|
Adversarial Feature Learning
|
1605.09782
|
http://arxiv.org/abs/1605.09782v7
|
http://arxiv.org/pdf/1605.09782v7.pdf
|
https://github.com/jeffdonahue/bigan
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.