paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/wide-inference-network-for-image-denoising
|
Wide Inference Network for Image Denoising via Learning Pixel-distribution Prior
|
1707.05414
|
http://arxiv.org/abs/1707.05414v5
|
http://arxiv.org/pdf/1707.05414v5.pdf
|
https://github.com/shibuiwilliam/DeepLearningDenoise
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/stability-of-periodic-orbits-in-no-slip
|
Stability of periodic orbits in no-slip billiards
|
1612.03355
|
http://arxiv.org/abs/1612.03355v1
|
http://arxiv.org/pdf/1612.03355v1.pdf
|
https://github.com/drscook/no_slip_billiards
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/beyond-a-gaussian-denoiser-residual-learning
|
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
|
1608.03981
|
http://arxiv.org/abs/1608.03981v1
|
http://arxiv.org/pdf/1608.03981v1.pdf
|
https://github.com/shibuiwilliam/DeepLearningDenoise
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/graph-attention-networks
|
Graph Attention Networks
|
1710.10903
|
http://arxiv.org/abs/1710.10903v3
|
http://arxiv.org/pdf/1710.10903v3.pdf
|
https://github.com/YunseobShin/wiki_GAT
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/dynamic-word-embeddings
|
Dynamic Word Embeddings
|
1702.08359
|
http://arxiv.org/abs/1702.08359v2
|
http://arxiv.org/pdf/1702.08359v2.pdf
|
https://github.com/accessai/dynamic_word_embeddings
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-2d-3d-correspondences-to-solve-the
|
Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem
|
2003.06752
|
https://arxiv.org/abs/2003.06752v1
|
https://arxiv.org/pdf/2003.06752v1.pdf
|
https://github.com/Liumouliu/Deep_blind_PnP
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hardware-distortion-correlation-has
|
Hardware Distortion Correlation Has Negligible Impact on UL Massive MIMO Spectral Efficiency
|
1811.02007
|
https://arxiv.org/abs/1811.02007v2
|
https://arxiv.org/pdf/1811.02007v2.pdf
|
https://github.com/emilbjornson/distortion-correlation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-collective-knowledge-workflow-for
|
A Collective Knowledge workflow for collaborative research into multi-objective autotuning and machine learning techniques
|
1801.08024
|
http://arxiv.org/abs/1801.08024v1
|
http://arxiv.org/pdf/1801.08024v1.pdf
|
https://github.com/ctuning/ck-rpi-optimization-results
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dtw-at-qur-an-qa-2022-utilising-transfer
|
DTW at Qur'an QA 2022: Utilising Transfer Learning with Transformers for Question Answering in a Low-resource Domain
|
2205.06025
|
https://arxiv.org/abs/2205.06025v1
|
https://arxiv.org/pdf/2205.06025v1.pdf
|
https://github.com/damithdr/questionanswering
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/gcr/torch-residual-networks
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/Edmonton-School-of-AI/ml5-Simple-Image-Classification
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/conditional-independence-testing-based-on-a
|
Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information
|
1709.01447
|
http://arxiv.org/abs/1709.01447v1
|
http://arxiv.org/pdf/1709.01447v1.pdf
|
https://github.com/jakobrunge/tigramite
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/root-mean-square-layer-normalization
|
Root Mean Square Layer Normalization
|
1910.07467
|
https://arxiv.org/abs/1910.07467v1
|
https://arxiv.org/pdf/1910.07467v1.pdf
|
https://github.com/bzhangGo/rmsnorm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/effective-approaches-to-attention-based
|
Effective Approaches to Attention-based Neural Machine Translation
|
1508.04025
|
http://arxiv.org/abs/1508.04025v5
|
http://arxiv.org/pdf/1508.04025v5.pdf
|
https://github.com/b-etienne/Seq2seq-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/b-etienne/Seq2seq-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/parameter-free-spatial-attention-network-for
|
Parameter-Free Spatial Attention Network for Person Re-Identification
|
1811.12150
|
http://arxiv.org/abs/1811.12150v1
|
http://arxiv.org/pdf/1811.12150v1.pdf
|
https://github.com/HRanWang/Spatial-Attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-robust-bayesian-committee-machine
|
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
|
1806.00720
|
http://arxiv.org/abs/1806.00720v1
|
http://arxiv.org/pdf/1806.00720v1.pdf
|
https://github.com/LiuHaiTao01/GRBCM
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/near-optimal-edge-evaluation-in-explicit
|
Near-Optimal Edge Evaluation in Explicit Generalized Binomial Graphs
|
1706.09351
|
http://arxiv.org/abs/1706.09351v1
|
http://arxiv.org/pdf/1706.09351v1.pdf
|
https://github.com/sanjibac/matlab_learning_collision_checking
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ivd-net-intervertebral-disc-localization-and
|
IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet
|
1811.08305
|
http://arxiv.org/abs/1811.08305v1
|
http://arxiv.org/pdf/1811.08305v1.pdf
|
https://github.com/josedolz/IVD-Net
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-neural-representation-of-sketch-drawings
|
A Neural Representation of Sketch Drawings
|
1704.03477
|
http://arxiv.org/abs/1704.03477v4
|
http://arxiv.org/pdf/1704.03477v4.pdf
|
https://github.com/thinkingmachines/christmAIs
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/end-to-end-sequence-labeling-via-bi
|
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
|
1603.01354
|
http://arxiv.org/abs/1603.01354v5
|
http://arxiv.org/pdf/1603.01354v5.pdf
|
https://github.com/XiafeiYu/CNN_BILSTM_CRF
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-deep-features-for-discriminative
|
Learning Deep Features for Discriminative Localization
|
1512.04150
|
http://arxiv.org/abs/1512.04150v1
|
http://arxiv.org/pdf/1512.04150v1.pdf
|
https://github.com/HRanWang/Spatial-Attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/optimizing-statistical-machine-translation
|
Optimizing Statistical Machine Translation for Text Simplification
| null |
https://aclanthology.org/Q16-1029
|
https://aclanthology.org/Q16-1029.pdf
|
https://github.com/cocoxu/simplification
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/eidos-indra-delphi-from-free-text-to
|
Eidos, INDRA, \& Delphi: From Free Text to Executable Causal Models
| null |
https://aclanthology.org/N19-4008
|
https://aclanthology.org/N19-4008.pdf
|
https://github.com/ml4ai/delphi
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/detecting-traffic-lights-by-single-shot
|
Detecting Traffic Lights by Single Shot Detection
|
1805.02523
|
http://arxiv.org/abs/1805.02523v3
|
http://arxiv.org/pdf/1805.02523v3.pdf
|
https://github.com/julimueller/tl_ssd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/melody-generation-for-pop-music-via-word
|
Melody Generation for Pop Music via Word Representation of Musical Properties
|
1710.11549
|
http://arxiv.org/abs/1710.11549v1
|
http://arxiv.org/pdf/1710.11549v1.pdf
|
https://github.com/mil-tokyo/NeuralMelody
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/active-learning-amidst-logical-knowledge
|
Active Learning amidst Logical Knowledge
|
1709.08850
|
http://arxiv.org/abs/1709.08850v1
|
http://arxiv.org/pdf/1709.08850v1.pdf
|
https://github.com/eaplatanios/makina
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bpr-bayesian-personalized-ranking-from
|
BPR: Bayesian Personalized Ranking from Implicit Feedback
|
1205.2618
|
http://arxiv.org/abs/1205.2618v1
|
http://arxiv.org/pdf/1205.2618v1.pdf
|
https://github.com/massquantity/LibRecommender
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/on-device-neural-language-model-based-word
|
On-Device Neural Language Model Based Word Prediction
| null |
https://aclanthology.org/C18-2028
|
https://aclanthology.org/C18-2028.pdf
|
https://github.com/meinwerk/WordPrediction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/see-more-know-more-unsupervised-video-object-1
|
See More, Know More: Unsupervised Video Object Segmentation with Co-Attention Siamese Networks
|
2001.06810
|
https://arxiv.org/abs/2001.06810v1
|
https://arxiv.org/pdf/2001.06810v1.pdf
|
https://github.com/carrierlxk/COSNet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/colorization-as-a-proxy-task-for-visual
|
Colorization as a Proxy Task for Visual Understanding
|
1703.04044
|
http://arxiv.org/abs/1703.04044v3
|
http://arxiv.org/pdf/1703.04044v3.pdf
|
https://github.com/gustavla/self-supervision
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/named-entity-recognition-for-hindi-english
|
Named Entity Recognition for Hindi-English Code-Mixed Social Media Text
| null |
https://aclanthology.org/W18-2405
|
https://aclanthology.org/W18-2405.pdf
|
https://github.com/SilentFlame/Named-Entity-Recognition
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gradient-harmonized-single-stage-detector
|
Gradient Harmonized Single-stage Detector
|
1811.05181
|
http://arxiv.org/abs/1811.05181v1
|
http://arxiv.org/pdf/1811.05181v1.pdf
|
https://github.com/xialuxi/GHMLoss-caffe
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/injecting-relational-structural
|
Injecting Relational Structural Representation in Neural Networks for Question Similarity
|
1806.08009
|
http://arxiv.org/abs/1806.08009v1
|
http://arxiv.org/pdf/1806.08009v1.pdf
|
https://github.com/aseveryn/deep-qa
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sgdlibrary-a-matlab-library-for-stochastic
|
SGDLibrary: A MATLAB library for stochastic gradient descent algorithms
|
1710.10951
|
http://arxiv.org/abs/1710.10951v2
|
http://arxiv.org/pdf/1710.10951v2.pdf
|
https://github.com/hiroyuki-kasai/SGDLibrary
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stochastic-primal-dual-hybrid-gradient
|
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
|
1706.04957
|
http://arxiv.org/abs/1706.04957v2
|
http://arxiv.org/pdf/1706.04957v2.pdf
|
https://github.com/mehrhardt/spdhg
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/adaptive-path-integral-autoencoder
|
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
|
1807.02128
|
http://arxiv.org/abs/1807.02128v4
|
http://arxiv.org/pdf/1807.02128v4.pdf
|
https://github.com/yjparkLiCS/18-NIPS-APIAE
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/pointnet-deep-learning-on-point-sets-for-3d
|
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
1612.00593
|
http://arxiv.org/abs/1612.00593v2
|
http://arxiv.org/pdf/1612.00593v2.pdf
|
https://github.com/YanWei123/PointNet-encoder-and-FoldingNet-decoder-add-quantization-change-latent-code-size-from-512-to-1024
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-distribution-binary-neural-networks
|
Self-Distribution Binary Neural Networks
|
2103.02394
|
https://arxiv.org/abs/2103.02394v2
|
https://arxiv.org/pdf/2103.02394v2.pdf
|
https://github.com/pingxue-hfut/sd-bnn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-reprojection-error-merging-feature
|
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation
|
2103.07153
|
https://arxiv.org/abs/2103.07153v1
|
https://arxiv.org/pdf/2103.07153v1.pdf
|
https://github.com/germain-hug/NRE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gl2vec-graph-embedding-enriched-by-line
|
GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features
| null |
https://link.springer.com/chapter/10.1007/978-3-030-36718-3_1
|
https://link.springer.com/chapter/10.1007/978-3-030-36718-3_1
|
https://github.com/benedekrozemberczki/karateclub
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/high-frequency-instabilities-of-stokes-waves
|
High-Frequency Instabilities of Stokes Waves
|
2107.11489
|
https://arxiv.org/abs/2107.11489v1
|
https://arxiv.org/pdf/2107.11489v1.pdf
|
https://github.com/rpac5130/wwp_isola
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/a-hierarchical-neural-attention-based-text
|
A Hierarchical Neural Attention-based Text Classifier
| null |
https://aclanthology.org/D18-1094
|
https://aclanthology.org/D18-1094.pdf
|
https://github.com/koustuvsinha/hier-class
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/stacked-filters-stationary-flow-for-hardware
|
Stacked Filters Stationary Flow For Hardware-Oriented Acceleration Of Deep Convolutional Neural Networks
|
1801.07459
|
http://arxiv.org/abs/1801.07459v3
|
http://arxiv.org/pdf/1801.07459v3.pdf
|
https://github.com/songhan/Deep-Compression-AlexNet
| true
| true
| false
|
caffe2
|
https://paperswithcode.com/paper/spectral-normalisation-for-deep-reinforcement
|
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
|
2105.05246
|
https://arxiv.org/abs/2105.05246v1
|
https://arxiv.org/pdf/2105.05246v1.pdf
|
https://github.com/floringogianu/snrl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-generative-joint-additive-sequential-model
|
A Generative Joint, Additive, Sequential Model of Topics and Speech Acts in Patient-Doctor Communication
| null |
https://aclanthology.org/D13-1182
|
https://aclanthology.org/D13-1182.pdf
|
https://github.com/bwallace/JAS
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/decoding-supercodes-of-gabidulin-codes-and
|
Decoding supercodes of Gabidulin codes and applications to cryptanalysis
|
2103.02700
|
https://arxiv.org/abs/2103.02700v3
|
https://arxiv.org/pdf/2103.02700v3.pdf
|
https://github.com/mbombar/Attack_on_LIGA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/exploring-transfer-learning-for-low-resource
|
Exploring Transfer Learning for Low Resource Emotional TTS
|
1901.04276
|
http://arxiv.org/abs/1901.04276v1
|
http://arxiv.org/pdf/1901.04276v1.pdf
|
https://github.com/SeanPLeary/dc_tts-transfer-learning
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/detecting-adversarial-samples-from-artifacts
|
Detecting Adversarial Samples from Artifacts
|
1703.00410
|
http://arxiv.org/abs/1703.00410v3
|
http://arxiv.org/pdf/1703.00410v3.pdf
|
https://github.com/rfeinman/detecting-adversarial-samples
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/long-term-temporal-convolutions-for-action
|
Long-term Temporal Convolutions for Action Recognition
|
1604.04494
|
http://arxiv.org/abs/1604.04494v2
|
http://arxiv.org/pdf/1604.04494v2.pdf
|
https://github.com/gulvarol/ltc
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/bayesian-cosmic-density-field-inference-from
|
Bayesian cosmic density field inference from redshift space dark matter maps
|
1810.05189
|
http://arxiv.org/abs/1810.05189v2
|
http://arxiv.org/pdf/1810.05189v2.pdf
|
https://github.com/egpbos/barcode
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/generating-adversarial-computer-programs-1
|
Generating Adversarial Computer Programs using Optimized Obfuscations
|
2103.11882
|
https://arxiv.org/abs/2103.11882v1
|
https://arxiv.org/pdf/2103.11882v1.pdf
|
https://github.com/ALFA-group/adversarial-code-generation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/lyeoni/pytorch-mnist-VAE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/is-there-a-black-hole-in-the-center-of-the
|
Is there a black hole in the center of the Sun?
|
2312.07647
|
https://arxiv.org/abs/2312.07647v2
|
https://arxiv.org/pdf/2312.07647v2.pdf
|
https://github.com/earlbellinger/black-hole-sun
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/training-machine-learning-models-by
|
Training Machine Learning Models by Regularizing their Explanations
|
1810.00869
|
http://arxiv.org/abs/1810.00869v1
|
http://arxiv.org/pdf/1810.00869v1.pdf
|
https://github.com/dtak/rrr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/infogan-interpretable-representation-learning
|
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
|
1606.03657
|
http://arxiv.org/abs/1606.03657v1
|
http://arxiv.org/pdf/1606.03657v1.pdf
|
https://github.com/VitoRazor/Gan_Architecture
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/singhsidhukuldeep/Generative-Adversarial-Network-GAN
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/structure-aware-convolutional-neural-networks
|
Structure-Aware Convolutional Neural Networks
| null |
http://papers.nips.cc/paper/7287-structure-aware-convolutional-neural-networks
|
http://papers.nips.cc/paper/7287-structure-aware-convolutional-neural-networks.pdf
|
https://github.com/vector-1127/SACNNs
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/verifying-strong-eventual-consistency-in
|
Verifying Strong Eventual Consistency in Distributed Systems
|
1707.01747
|
http://arxiv.org/abs/1707.01747v3
|
http://arxiv.org/pdf/1707.01747v3.pdf
|
https://github.com/octalsrc/octar
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/hierarchical-probabilistic-model-for-blind
|
Hierarchical Probabilistic Model for Blind Source Separation via Legendre Transformation
|
1909.11294
|
https://arxiv.org/abs/1909.11294v3
|
https://arxiv.org/pdf/1909.11294v3.pdf
|
https://github.com/sjmluo/IGLLM
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-systematic-dnn-weight-pruning-framework
|
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers
|
1804.03294
|
http://arxiv.org/abs/1804.03294v3
|
http://arxiv.org/pdf/1804.03294v3.pdf
|
https://github.com/KaiqiZhang/caffe-admm
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/disentangling-factors-of-variation-with-cycle
|
Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders
|
1804.10469
|
http://arxiv.org/abs/1804.10469v1
|
http://arxiv.org/pdf/1804.10469v1.pdf
|
https://github.com/ananyahjha93/challenges-in-disentangling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-for-video-super-resolution-through
|
Learning for Video Super-Resolution through HR Optical Flow Estimation
|
1809.08573
|
http://arxiv.org/abs/1809.08573v2
|
http://arxiv.org/pdf/1809.08573v2.pdf
|
https://github.com/LongguangWang/SOF-VSR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/180809781
|
Self-Attentive Sequential Recommendation
|
1808.09781
|
http://arxiv.org/abs/1808.09781v1
|
http://arxiv.org/pdf/1808.09781v1.pdf
|
https://github.com/kang205/SASRec
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/drit-diverse-image-to-image-translation-via
|
DRIT++: Diverse Image-to-Image Translation via Disentangled Representations
|
1905.01270
|
https://arxiv.org/abs/1905.01270v2
|
https://arxiv.org/pdf/1905.01270v2.pdf
|
https://github.com/taki0112/DRIT-Tensorflow
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/shape-robust-text-detection-with-progressive
|
Shape Robust Text Detection with Progressive Scale Expansion Network
|
1806.02559
|
http://arxiv.org/abs/1806.02559v1
|
http://arxiv.org/pdf/1806.02559v1.pdf
|
https://github.com/liuheng92/tensorflow_PSENet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/bayesian-cosmic-web-reconstruction-barcode
|
Bayesian Cosmic Web Reconstruction: BARCODE for Clusters
|
1611.01220
|
http://arxiv.org/abs/1611.01220v1
|
http://arxiv.org/pdf/1611.01220v1.pdf
|
https://github.com/egpbos/barcode
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/textsnake-a-flexible-representation-for
|
TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes
|
1807.01544
|
https://arxiv.org/abs/1807.01544v2
|
https://arxiv.org/pdf/1807.01544v2.pdf
|
https://github.com/princewang1994/TextSnake.pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-estimation-and-generative-adversarial
|
Robust Estimation and Generative Adversarial Nets
|
1810.02030
|
http://arxiv.org/abs/1810.02030v3
|
http://arxiv.org/pdf/1810.02030v3.pdf
|
https://github.com/zhuwzh/Robust-GAN-Center
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-unreasonable-effectiveness-of-noisy-data
|
The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition
|
1511.06789
|
http://arxiv.org/abs/1511.06789v3
|
http://arxiv.org/pdf/1511.06789v3.pdf
|
https://github.com/google/goldfinch
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tags2parts-discovering-semantic-regions-from
|
Tags2Parts: Discovering Semantic Regions from Shape Tags
|
1708.06673
|
http://arxiv.org/abs/1708.06673v3
|
http://arxiv.org/pdf/1708.06673v3.pdf
|
https://github.com/sanjeevmk/Tags2Parts
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/capsgan-using-dynamic-routing-for-generative
|
CapsGAN: Using Dynamic Routing for Generative Adversarial Networks
|
1806.03968
|
http://arxiv.org/abs/1806.03968v1
|
http://arxiv.org/pdf/1806.03968v1.pdf
|
https://github.com/raeidsaqur/CapsGAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-evaluation-of-the-heun-functions
|
On evaluation of the Heun functions
|
1506.03848
|
http://arxiv.org/abs/1506.03848v1
|
http://arxiv.org/pdf/1506.03848v1.pdf
|
https://github.com/motygin/Heun_functions
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/feature-pyramid-networks-for-object-detection
|
Feature Pyramid Networks for Object Detection
|
1612.03144
|
http://arxiv.org/abs/1612.03144v2
|
http://arxiv.org/pdf/1612.03144v2.pdf
|
https://github.com/YudeWang/UNet-Satellite-Image-Segmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-pose-specific-representations-by
|
Learning Pose Specific Representations by Predicting Different Views
|
1804.03390
|
http://arxiv.org/abs/1804.03390v2
|
http://arxiv.org/pdf/1804.03390v2.pdf
|
https://github.com/poier/PreView
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/gongenhao/GANCS
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/multi-view-stereo-3d-edge-reconstruction
|
Multi-View Stereo 3D Edge Reconstruction
|
1801.05606
|
http://arxiv.org/abs/1801.05606v1
|
http://arxiv.org/pdf/1801.05606v1.pdf
|
https://github.com/abignoli/EdgeGraph3D
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ml-leaks-model-and-data-independent
|
ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models
|
1806.01246
|
http://arxiv.org/abs/1806.01246v2
|
http://arxiv.org/pdf/1806.01246v2.pdf
|
https://github.com/katekemu/mia
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-systematic-evaluation-of-recent-deep
|
A Systematic Evaluation of Recent Deep Learning Architectures for Fine-Grained Vehicle Classification
|
1806.02987
|
http://arxiv.org/abs/1806.02987v1
|
http://arxiv.org/pdf/1806.02987v1.pdf
|
https://github.com/OrkhanHI/Grab-AI-Computer-Vision-Challenge
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bert4rec-sequential-recommendation-with
|
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer
|
1904.06690
|
https://arxiv.org/abs/1904.06690v2
|
https://arxiv.org/pdf/1904.06690v2.pdf
|
https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-photo-style-transfer
|
Deep Photo Style Transfer
|
1703.07511
|
http://arxiv.org/abs/1703.07511v3
|
http://arxiv.org/pdf/1703.07511v3.pdf
|
https://github.com/purushothamgowthu/deep-photo-styletransfer
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/deeplab-semantic-image-segmentation-with-deep
|
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
|
1606.00915
|
http://arxiv.org/abs/1606.00915v2
|
http://arxiv.org/pdf/1606.00915v2.pdf
|
https://github.com/purushothamgowthu/deep-photo-styletransfer
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/banach-wasserstein-gan
|
Banach Wasserstein GAN
|
1806.06621
|
http://arxiv.org/abs/1806.06621v2
|
http://arxiv.org/pdf/1806.06621v2.pdf
|
https://github.com/adler-j/bwgan
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-universal-music-translation-network
|
A Universal Music Translation Network
|
1805.07848
|
http://arxiv.org/abs/1805.07848v2
|
http://arxiv.org/pdf/1805.07848v2.pdf
|
https://github.com/scpark20/universal-music-translation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/wavenet-a-generative-model-for-raw-audio
|
WaveNet: A Generative Model for Raw Audio
|
1609.03499
|
http://arxiv.org/abs/1609.03499v2
|
http://arxiv.org/pdf/1609.03499v2.pdf
|
https://github.com/scpark20/universal-music-translation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/can-we-still-avoid-automatic-face-detection
|
Can we still avoid automatic face detection?
|
1602.04504
|
https://arxiv.org/abs/1602.04504v2
|
https://arxiv.org/pdf/1602.04504v2.pdf
|
https://github.com/cydonia999/Tiny_Faces_in_Tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/difftune-mpc-closed-loop-learning-for-model
|
DiffTune-MPC: Closed-Loop Learning for Model Predictive Control
|
2312.11384
|
https://arxiv.org/abs/2312.11384v3
|
https://arxiv.org/pdf/2312.11384v3.pdf
|
https://github.com/sheng-cheng/difftuneopensource
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-learning-methods-for-reynolds-averaged
|
Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows
|
1810.08217
|
https://arxiv.org/abs/1810.08217v3
|
https://arxiv.org/pdf/1810.08217v3.pdf
|
https://github.com/thunil/Deep-Flow-Prediction
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/emulating-spatio-temporal-realizations-of
|
Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic Turbulence via Deep Sequence Learning Models
|
2112.03469
|
https://arxiv.org/abs/2112.03469v1
|
https://arxiv.org/pdf/2112.03469v1.pdf
|
https://github.com/MReza89/Emulating-Spatio-Temporal-Realizations-of-Three-Dimensional-Isotropic-Turbulence-via-Deep-Sequence
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/iterative-gaussianization-from-ica-to-random
|
Iterative Gaussianization: from ICA to Random Rotations
|
1602.00229
|
http://arxiv.org/abs/1602.00229v1
|
http://arxiv.org/pdf/1602.00229v1.pdf
|
https://github.com/spencerkent/pyRBIG
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/rl2-fast-reinforcement-learning-via-slow
|
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
|
1611.02779
|
http://arxiv.org/abs/1611.02779v2
|
http://arxiv.org/pdf/1611.02779v2.pdf
|
https://github.com/dragen1860/MAML-Pytorch-RL
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/disentangling-factors-of-variation-in-deep
|
Disentangling factors of variation in deep representations using adversarial training
|
1611.03383
|
http://arxiv.org/abs/1611.03383v1
|
http://arxiv.org/pdf/1611.03383v1.pdf
|
https://github.com/ananyahjha93/challenges-in-disentangling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-task-deep-morphological-analyzer
|
Multi Task Deep Morphological Analyzer: Context Aware Joint Morphological Tagging and Lemma Prediction
|
1811.08619
|
https://arxiv.org/abs/1811.08619v2
|
https://arxiv.org/pdf/1811.08619v2.pdf
|
https://github.com/Saurav0074/morph_analyzer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/compacter-efficient-low-rank-hypercomplex
|
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
|
2106.04647
|
https://arxiv.org/abs/2106.04647v2
|
https://arxiv.org/pdf/2106.04647v2.pdf
|
https://github.com/rabeehk/compacter
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/thinkingmachines/christmAIs
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/liar-liar-pants-on-fire-a-new-benchmark
|
"Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection
|
1705.00648
|
http://arxiv.org/abs/1705.00648v1
|
http://arxiv.org/pdf/1705.00648v1.pdf
|
https://github.com/JelenaBanjac/AppliedDataAnalysis
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-multi-level-hierarchies-with
|
Learning Multi-Level Hierarchies with Hindsight
|
1712.00948
|
https://arxiv.org/abs/1712.00948v5
|
https://arxiv.org/pdf/1712.00948v5.pdf
|
https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-framework-for-algorithm-deployment-on-cloud
|
A framework for algorithm deployment on cloud-based quantum computers
|
1810.10576
|
http://arxiv.org/abs/1810.10576v1
|
http://arxiv.org/pdf/1810.10576v1.pdf
|
https://github.com/hsim13372/QCompress
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/no-metrics-are-perfect-adversarial-reward
|
No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling
|
1804.09160
|
http://arxiv.org/abs/1804.09160v2
|
http://arxiv.org/pdf/1804.09160v2.pdf
|
https://github.com/littlekobe/AREL
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/semantic-instance-segmentation-via-deep
|
Semantic Instance Segmentation via Deep Metric Learning
|
1703.10277
|
http://arxiv.org/abs/1703.10277v1
|
http://arxiv.org/pdf/1703.10277v1.pdf
|
https://github.com/alicranck/instance-seg
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.