sakkysakky's picture
End of training
b4eb658 verified
|
raw
history blame
3.07 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: vit-pushup-form-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9733333333333334
          - name: F1
            type: f1
            value: 0.9733475783475783
          - name: Precision
            type: precision
            value: 0.9737081183656526
          - name: Recall
            type: recall
            value: 0.9733333333333334

vit-pushup-form-classifier

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0633
  • Accuracy: 0.9733
  • F1: 0.9733
  • Precision: 0.9737
  • Recall: 0.9733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2205 1.0 44 0.2602 0.8533 0.8532 0.8534 0.8533
0.1148 2.0 88 0.2138 0.9 0.9000 0.9 0.9
0.0869 3.0 132 0.2535 0.8933 0.8931 0.8942 0.8933
0.0592 4.0 176 0.1646 0.9 0.8997 0.9014 0.9
0.0559 5.0 220 0.1587 0.9267 0.9265 0.9283 0.9267
0.034 6.0 264 0.2178 0.9133 0.9129 0.9166 0.9133
0.0171 7.0 308 0.1712 0.9267 0.9266 0.9272 0.9267
0.0107 8.0 352 0.1740 0.9267 0.9265 0.9283 0.9267
0.0139 9.0 396 0.1631 0.9333 0.9332 0.9344 0.9333
0.0046 10.0 440 0.1692 0.9333 0.9331 0.9359 0.9333

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1