tomaarsen's picture
tomaarsen HF Staff
Add new SentenceTransformer model
7ca7e07 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:132553
  - loss:MultipleNegativesSymmetricRankingLoss
base_model: laion/clap-htsat-fused
widget:
  - source_sentence: >-
      HE WAS OUT OF HIS MIND WITH SOMETHING HE OVERHEARD ABOUT EATING PEOPLE'S
      FLESH AND DRINKING BLOOD WHAT'S THE GOOD OF TALKING LIKE THAT
    sentences:
      - >-
        NESTORIUS WHO DEPENDED ON THE NEAR APPROACH OF HIS EASTERN FRIENDS
        PERSISTED LIKE HIS PREDECESSOR CHRYSOSTOM TO DISCLAIM THE JURISDICTION
        AND TO DISOBEY THE SUMMONS OF HIS ENEMIES THEY HASTENED HIS TRIAL AND
        HIS ACCUSER PRESIDED IN THE SEAT OF JUDGMENT
      - >-
        THEN BACK I TURNED MY FACE TO THOSE HIGH THINGS WHICH MOVED THEMSELVES
        TOWARDS US SO SEDATELY THEY HAD BEEN DISTANCED BY NEW WEDDED BRIDES
      - >-
        THE PROGRESS OF PRESIDENT DAVIS TO THE NEW CAPITAL SET IN THE VERY FACE
        OF THE FOE WAS TO BE ONE HUGE TRIUMPH OF FAITH AND LOYALTY
  - source_sentence: I BELIEVE THE SERIOUSNESS OF THE AMERICANS ARISES PARTLY FROM THEIR PRIDE
    sentences:
      - YOU HAVE BEEN TO THE HOTEL HE BURST OUT YOU HAVE SEEN CATHERINE
      - WHAT DO YOU MEAN SIR
      - >-
        A HARSH LAUGH FROM COMRADE OSSIPON CUT THE TIRADE DEAD SHORT IN A SUDDEN
        FALTERING OF THE TONGUE AND A BEWILDERED UNSTEADINESS OF THE APOSTLE'S
        MILDLY EXALTED EYES
  - source_sentence: >-
      BUT YOU OUGHT TO HAVE KNOWN THAT WE ARE ONLY HALF AN HOUR BEHIND YOU AT
      SYDENHAM IN THE MATTER OF NEWS
    sentences:
      - >-
        DOWN BELOW IN THE QUIET NARROW STREET MEASURED FOOTSTEPS APPROACHED THE
        HOUSE THEN DIED AWAY UNHURRIED AND FIRM AS IF THE PASSER BY HAD STARTED
        TO PACE OUT ALL ETERNITY FROM GAS LAMP TO GAS LAMP IN A NIGHT WITHOUT
        END AND THE DROWSY TICKING OF THE OLD CLOCK ON THE LANDING BECAME
        DISTINCTLY AUDIBLE IN THE BEDROOM
      - >-
        IT WAS A SUMMER NIGHT AND THE GUESTS WERE WANDERING IN AND OUT AT WILL
        AND THROUGH HOUSE AND GARDEN AMID LOVELY THINGS OF ALL COLORS AND ODORS
      - >-
        IF A MAN WERE SLAIN IN BATTLE IT WAS AN OLD CUSTOM TO PLACE HIS BODY
        AGAINST A TREE OR ROCK IN A SITTING POSITION ALWAYS FACING THE ENEMY TO
        INDICATE HIS UNDAUNTED DEFIANCE AND BRAVERY EVEN IN DEATH
  - source_sentence: >-
      THE MERCHANT'S DAUGHTER AT FIRST DID NOT ANSWER BUT AS HE KEPT ON CALLING
      TO HER SHE FINALLY ASKED HIM WHAT IT WAS THAT HE WANTED
    sentences:
      - >-
        LODGED IN THE BRANCHES OF A PINYON TREE I THINK IT IS BUT HE DOESN'T
        ANSWER ME
      - HOW ASKED TAD
      - >-
        THE SECOND WAS AS IF HER FLESH AND BONES HAD ALL BEEN FASHIONED OUT OF
        EMERALD THE THIRD APPEARED AS SNOW BUT NEWLY FALLEN
  - source_sentence: >-
      THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED LOOMS UP
      MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE
      INTOLERABLE THOSE ARE THE FANATICS
    sentences:
      - >-
        I SHALL LOCK UP ALL THE DOORS AND WINDOWS IN THE HOUSE AND THEN I SHALL
        GIVE YOU MY LATCH KEY AND YOU CAN LET YOURSELF IN AND STAY THE NIGHT
        HERE THERE IS NO ONE IN THE HOUSE
      - >-
        HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE
        HAD BEEN INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST
      - >-
        HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE
        HAD SENT THE MONEY PERHAPS HE COULD DO IT UP HERE
datasets:
  - openslr/librispeech_asr
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
co2_eq_emissions:
  emissions: 114.78151570511905
  energy_consumed: 0.42889417052827883
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 2.094
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: CLAP model trained on COCO Captions
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: librispeech eval
          type: librispeech-eval
        metrics:
          - type: cosine_accuracy@1
            value: 0.108
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.196
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.272
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.438
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.108
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.06533333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.054400000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0438
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.108
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.196
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.272
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.438
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.24322279069515917
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.18493690476190464
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.20597911270433167
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: librispeech test
          type: librispeech-test
        metrics:
          - type: cosine_accuracy@1
            value: 0.151
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.288
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.371
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.518
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.151
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.096
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.0742
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0518
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.151
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.288
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.371
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.518
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.31319206378414244
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.25047857142857116
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2693786295421681
            name: Cosine Map@100

CLAP model trained on COCO Captions

This is a sentence-transformers model finetuned from laion/clap-htsat-fused on the librispeech_asr dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: laion/clap-htsat-fused
  • Maximum Sequence Length: None tokens
  • Output Dimensionality: None dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'audio': {'method': 'get_audio_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'ClapModel'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/clap-htsat-fused-librispeech")
# Run inference
sentences = [
    'THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE INTOLERABLE THOSE ARE THE FANATICS',
    'HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT THE MONEY PERHAPS HE COULD DO IT UP HERE',
    'HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.4742, -0.2719],
#         [-0.4742,  1.0000,  0.8206],
#         [-0.2719,  0.8206,  1.0000]])

Evaluation

Metrics

Information Retrieval

Metric librispeech-eval librispeech-test
cosine_accuracy@1 0.108 0.151
cosine_accuracy@3 0.196 0.288
cosine_accuracy@5 0.272 0.371
cosine_accuracy@10 0.438 0.518
cosine_precision@1 0.108 0.151
cosine_precision@3 0.0653 0.096
cosine_precision@5 0.0544 0.0742
cosine_precision@10 0.0438 0.0518
cosine_recall@1 0.108 0.151
cosine_recall@3 0.196 0.288
cosine_recall@5 0.272 0.371
cosine_recall@10 0.438 0.518
cosine_ndcg@10 0.2432 0.3132
cosine_mrr@10 0.1849 0.2505
cosine_map@100 0.206 0.2694

Training Details

Training Dataset

librispeech_asr

  • Dataset: librispeech_asr at 71cacbf
  • Size: 132,553 training samples
  • Columns: audio and text
  • Approximate statistics based on the first 1000 samples:
    audio text
    type dict string
    details
    • min: 20 characters
    • mean: 189.15 characters
    • max: 294 characters
  • Samples:
    audio text
    {'path': '374-180298-0000.flac', 'array': array([ 6.92203816e-04, 8.04404495e-04, 8.03834875e-04, ...,
    -3.02505396e-05, -6.59527450e-06, 1.11444592e-06]), 'sampling_rate': 48000}
    CHAPTER SIXTEEN I MIGHT HAVE TOLD YOU OF THE BEGINNING OF THIS LIAISON IN A FEW LINES BUT I WANTED YOU TO SEE EVERY STEP BY WHICH WE CAME I TO AGREE TO WHATEVER MARGUERITE WISHED
    {'path': '374-180298-0001.flac', 'array': array([-9.33515839e-05, -1.25754057e-04, -1.44482241e-04, ...,
    -2.66165182e-04, -2.03228556e-04, -1.03404833e-04]), 'sampling_rate': 48000}
    MARGUERITE TO BE UNABLE TO LIVE APART FROM ME IT WAS THE DAY AFTER THE EVENING WHEN SHE CAME TO SEE ME THAT I SENT HER MANON LESCAUT FROM THAT TIME SEEING THAT I COULD NOT CHANGE MY MISTRESS'S LIFE I CHANGED MY OWN
    {'path': '374-180298-0002.flac', 'array': array([-2.47883319e-04, -2.91854434e-04, -2.82971043e-04, ...,
    -1.43931946e-04, -1.17829914e-04, -6.32331648e-05]), 'sampling_rate': 48000}
    I WISHED ABOVE ALL NOT TO LEAVE MYSELF TIME TO THINK OVER THE POSITION I HAD ACCEPTED FOR IN SPITE OF MYSELF IT WAS A GREAT DISTRESS TO ME THUS MY LIFE GENERALLY SO CALM
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

librispeech_asr

  • Dataset: librispeech_asr at 71cacbf
  • Size: 1,000 evaluation samples
  • Columns: audio and text
  • Approximate statistics based on the first 1000 samples:
    audio text
    type dict string
    details
    • min: 8 characters
    • mean: 104.62 characters
    • max: 516 characters
  • Samples:
    audio text
    {'path': '2277-149896-0000.flac', 'array': array([ 0.00179741, 0.00170625, 0.00120927, ..., -0.00144462,
    -0.00102732, -0.00048062]), 'sampling_rate': 48000}
    HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE
    {'path': '2277-149896-0001.flac', 'array': array([ 0.00111104, 0.00081758, 0.00021103, ..., -0.00138193,
    -0.0009173 , -0.00041702]), 'sampling_rate': 48000}
    HE WOULD HAVE TO PAY HER THE MONEY WHICH SHE WOULD NOW REGULARLY DEMAND OR THERE WOULD BE TROUBLE IT DID NOT MATTER WHAT HE DID
    {'path': '2277-149896-0002.flac', 'array': array([0.00080266, 0.00088462, 0.00083408, ..., 0.00105488, 0.00083673,
    0.00043296]), 'sampling_rate': 48000}
    HURSTWOOD WALKED THE FLOOR MENTALLY ARRANGING THE CHIEF POINTS OF HIS SITUATION
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • use_cpu: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • half_precision_backend: None
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss librispeech-eval_cosine_ndcg@10 librispeech-test_cosine_ndcg@10
-1 -1 - - 0.0114 -
0.0100 83 3.5908 - - -
0.0200 166 2.5371 - - -
0.0301 249 2.1799 - - -
0.0401 332 2.0415 - - -
0.0501 415 1.9394 - - -
0.0601 498 1.8167 - - -
0.0701 581 1.7589 - - -
0.0801 664 1.7262 - - -
0.0902 747 1.7585 - - -
0.1001 829 - 1.5991 0.0335 -
0.1002 830 1.7521 - - -
0.1102 913 1.6822 - - -
0.1202 996 1.6176 - - -
0.1302 1079 1.6391 - - -
0.1403 1162 1.6931 - - -
0.1503 1245 1.4626 - - -
0.1603 1328 1.4305 - - -
0.1703 1411 1.4998 - - -
0.1803 1494 1.4073 - - -
0.1903 1577 1.3843 - - -
0.2001 1658 - 1.2227 0.0925 -
0.2004 1660 1.3371 - - -
0.2104 1743 1.3908 - - -
0.2204 1826 1.2835 - - -
0.2304 1909 1.3203 - - -
0.2404 1992 1.2549 - - -
0.2505 2075 1.2384 - - -
0.2605 2158 1.2189 - - -
0.2705 2241 1.1658 - - -
0.2805 2324 1.1771 - - -
0.2905 2407 1.2068 - - -
0.3002 2487 - 1.0471 0.1318 -
0.3005 2490 1.1708 - - -
0.3106 2573 1.1389 - - -
0.3206 2656 1.0786 - - -
0.3306 2739 1.0792 - - -
0.3406 2822 1.0562 - - -
0.3506 2905 0.98 - - -
0.3607 2988 1.1153 - - -
0.3707 3071 0.9987 - - -
0.3807 3154 1.0002 - - -
0.3907 3237 1.0017 - - -
0.4002 3316 - 0.8901 0.1589 -
0.4007 3320 0.9364 - - -
0.4107 3403 0.9394 - - -
0.4208 3486 0.9459 - - -
0.4308 3569 0.9604 - - -
0.4408 3652 0.9491 - - -
0.4508 3735 0.9295 - - -
0.4608 3818 0.9508 - - -
0.4709 3901 0.9122 - - -
0.4809 3984 0.8483 - - -
0.4909 4067 0.8443 - - -
0.5003 4145 - 0.7955 0.1908 -
0.5009 4150 0.8838 - - -
0.5109 4233 0.8367 - - -
0.5209 4316 0.8516 - - -
0.5310 4399 0.8112 - - -
0.5410 4482 0.8368 - - -
0.5510 4565 0.873 - - -
0.5610 4648 0.8156 - - -
0.5710 4731 0.8864 - - -
0.5811 4814 0.8278 - - -
0.5911 4897 0.8006 - - -
0.6004 4974 - 0.7649 0.1874 -
0.6011 4980 0.8199 - - -
0.6111 5063 0.7475 - - -
0.6211 5146 0.7345 - - -
0.6311 5229 0.7301 - - -
0.6412 5312 0.774 - - -
0.6512 5395 0.7391 - - -
0.6612 5478 0.6929 - - -
0.6712 5561 0.7218 - - -
0.6812 5644 0.7071 - - -
0.6912 5727 0.7024 - - -
0.7004 5803 - 0.6712 0.2419 -
0.7013 5810 0.6428 - - -
0.7113 5893 0.6719 - - -
0.7213 5976 0.6972 - - -
0.7313 6059 0.7043 - - -
0.7413 6142 0.663 - - -
0.7514 6225 0.6963 - - -
0.7614 6308 0.6591 - - -
0.7714 6391 0.6736 - - -
0.7814 6474 0.7033 - - -
0.7914 6557 0.6314 - - -
0.8005 6632 - 0.6806 0.2319 -
0.8014 6640 0.6508 - - -
0.8115 6723 0.6532 - - -
0.8215 6806 0.6788 - - -
0.8315 6889 0.6038 - - -
0.8415 6972 0.658 - - -
0.8515 7055 0.656 - - -
0.8616 7138 0.6533 - - -
0.8716 7221 0.601 - - -
0.8816 7304 0.6243 - - -
0.8916 7387 0.6315 - - -
0.9005 7461 - 0.6526 0.2432 -
0.9016 7470 0.5707 - - -
0.9116 7553 0.5778 - - -
0.9217 7636 0.5736 - - -
0.9317 7719 0.615 - - -
0.9417 7802 0.5756 - - -
0.9517 7885 0.5724 - - -
0.9617 7968 0.5678 - - -
0.9718 8051 0.5661 - - -
0.9818 8134 0.6162 - - -
0.9918 8217 0.5766 - - -
-1 -1 - - - 0.3132

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.429 kWh
  • Carbon Emitted: 0.115 kg of CO2
  • Hours Used: 2.094 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 5.2.0.dev0
  • Transformers: 4.57.0.dev0
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}