|
|
---
|
|
|
language:
|
|
|
- en
|
|
|
license: apache-2.0
|
|
|
tags:
|
|
|
- sentence-transformers
|
|
|
- sentence-similarity
|
|
|
- feature-extraction
|
|
|
- dense
|
|
|
- generated_from_trainer
|
|
|
- dataset_size:132553
|
|
|
- loss:MultipleNegativesSymmetricRankingLoss
|
|
|
base_model: laion/clap-htsat-fused
|
|
|
widget:
|
|
|
- source_sentence: HE WAS OUT OF HIS MIND WITH SOMETHING HE OVERHEARD ABOUT EATING
|
|
|
PEOPLE'S FLESH AND DRINKING BLOOD WHAT'S THE GOOD OF TALKING LIKE THAT
|
|
|
sentences:
|
|
|
- NESTORIUS WHO DEPENDED ON THE NEAR APPROACH OF HIS EASTERN FRIENDS PERSISTED LIKE
|
|
|
HIS PREDECESSOR CHRYSOSTOM TO DISCLAIM THE JURISDICTION AND TO DISOBEY THE SUMMONS
|
|
|
OF HIS ENEMIES THEY HASTENED HIS TRIAL AND HIS ACCUSER PRESIDED IN THE SEAT OF
|
|
|
JUDGMENT
|
|
|
- THEN BACK I TURNED MY FACE TO THOSE HIGH THINGS WHICH MOVED THEMSELVES TOWARDS
|
|
|
US SO SEDATELY THEY HAD BEEN DISTANCED BY NEW WEDDED BRIDES
|
|
|
- THE PROGRESS OF PRESIDENT DAVIS TO THE NEW CAPITAL SET IN THE VERY FACE OF THE
|
|
|
FOE WAS TO BE ONE HUGE TRIUMPH OF FAITH AND LOYALTY
|
|
|
- source_sentence: I BELIEVE THE SERIOUSNESS OF THE AMERICANS ARISES PARTLY FROM THEIR
|
|
|
PRIDE
|
|
|
sentences:
|
|
|
- YOU HAVE BEEN TO THE HOTEL HE BURST OUT YOU HAVE SEEN CATHERINE
|
|
|
- WHAT DO YOU MEAN SIR
|
|
|
- A HARSH LAUGH FROM COMRADE OSSIPON CUT THE TIRADE DEAD SHORT IN A SUDDEN FALTERING
|
|
|
OF THE TONGUE AND A BEWILDERED UNSTEADINESS OF THE APOSTLE'S MILDLY EXALTED EYES
|
|
|
- source_sentence: BUT YOU OUGHT TO HAVE KNOWN THAT WE ARE ONLY HALF AN HOUR BEHIND
|
|
|
YOU AT SYDENHAM IN THE MATTER OF NEWS
|
|
|
sentences:
|
|
|
- DOWN BELOW IN THE QUIET NARROW STREET MEASURED FOOTSTEPS APPROACHED THE HOUSE
|
|
|
THEN DIED AWAY UNHURRIED AND FIRM AS IF THE PASSER BY HAD STARTED TO PACE OUT
|
|
|
ALL ETERNITY FROM GAS LAMP TO GAS LAMP IN A NIGHT WITHOUT END AND THE DROWSY TICKING
|
|
|
OF THE OLD CLOCK ON THE LANDING BECAME DISTINCTLY AUDIBLE IN THE BEDROOM
|
|
|
- IT WAS A SUMMER NIGHT AND THE GUESTS WERE WANDERING IN AND OUT AT WILL AND THROUGH
|
|
|
HOUSE AND GARDEN AMID LOVELY THINGS OF ALL COLORS AND ODORS
|
|
|
- IF A MAN WERE SLAIN IN BATTLE IT WAS AN OLD CUSTOM TO PLACE HIS BODY AGAINST A
|
|
|
TREE OR ROCK IN A SITTING POSITION ALWAYS FACING THE ENEMY TO INDICATE HIS UNDAUNTED
|
|
|
DEFIANCE AND BRAVERY EVEN IN DEATH
|
|
|
- source_sentence: THE MERCHANT'S DAUGHTER AT FIRST DID NOT ANSWER BUT AS HE KEPT
|
|
|
ON CALLING TO HER SHE FINALLY ASKED HIM WHAT IT WAS THAT HE WANTED
|
|
|
sentences:
|
|
|
- LODGED IN THE BRANCHES OF A PINYON TREE I THINK IT IS BUT HE DOESN'T ANSWER ME
|
|
|
- HOW ASKED TAD
|
|
|
- THE SECOND WAS AS IF HER FLESH AND BONES HAD ALL BEEN FASHIONED OUT OF EMERALD
|
|
|
THE THIRD APPEARED AS SNOW BUT NEWLY FALLEN
|
|
|
- source_sentence: THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED
|
|
|
LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE
|
|
|
INTOLERABLE THOSE ARE THE FANATICS
|
|
|
sentences:
|
|
|
- I SHALL LOCK UP ALL THE DOORS AND WINDOWS IN THE HOUSE AND THEN I SHALL GIVE YOU
|
|
|
MY LATCH KEY AND YOU CAN LET YOURSELF IN AND STAY THE NIGHT HERE THERE IS NO ONE
|
|
|
IN THE HOUSE
|
|
|
- HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN
|
|
|
INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST
|
|
|
- HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT
|
|
|
THE MONEY PERHAPS HE COULD DO IT UP HERE
|
|
|
datasets:
|
|
|
- openslr/librispeech_asr
|
|
|
pipeline_tag: sentence-similarity
|
|
|
library_name: sentence-transformers
|
|
|
metrics:
|
|
|
- cosine_accuracy@1
|
|
|
- cosine_accuracy@3
|
|
|
- cosine_accuracy@5
|
|
|
- cosine_accuracy@10
|
|
|
- cosine_precision@1
|
|
|
- cosine_precision@3
|
|
|
- cosine_precision@5
|
|
|
- cosine_precision@10
|
|
|
- cosine_recall@1
|
|
|
- cosine_recall@3
|
|
|
- cosine_recall@5
|
|
|
- cosine_recall@10
|
|
|
- cosine_ndcg@10
|
|
|
- cosine_mrr@10
|
|
|
- cosine_map@100
|
|
|
co2_eq_emissions:
|
|
|
emissions: 114.78151570511905
|
|
|
energy_consumed: 0.42889417052827883
|
|
|
source: codecarbon
|
|
|
training_type: fine-tuning
|
|
|
on_cloud: false
|
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
|
ram_total_size: 31.777088165283203
|
|
|
hours_used: 2.094
|
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
|
model-index:
|
|
|
- name: CLAP model trained on COCO Captions
|
|
|
results:
|
|
|
- task:
|
|
|
type: information-retrieval
|
|
|
name: Information Retrieval
|
|
|
dataset:
|
|
|
name: librispeech eval
|
|
|
type: librispeech-eval
|
|
|
metrics:
|
|
|
- type: cosine_accuracy@1
|
|
|
value: 0.108
|
|
|
name: Cosine Accuracy@1
|
|
|
- type: cosine_accuracy@3
|
|
|
value: 0.196
|
|
|
name: Cosine Accuracy@3
|
|
|
- type: cosine_accuracy@5
|
|
|
value: 0.272
|
|
|
name: Cosine Accuracy@5
|
|
|
- type: cosine_accuracy@10
|
|
|
value: 0.438
|
|
|
name: Cosine Accuracy@10
|
|
|
- type: cosine_precision@1
|
|
|
value: 0.108
|
|
|
name: Cosine Precision@1
|
|
|
- type: cosine_precision@3
|
|
|
value: 0.06533333333333333
|
|
|
name: Cosine Precision@3
|
|
|
- type: cosine_precision@5
|
|
|
value: 0.054400000000000004
|
|
|
name: Cosine Precision@5
|
|
|
- type: cosine_precision@10
|
|
|
value: 0.0438
|
|
|
name: Cosine Precision@10
|
|
|
- type: cosine_recall@1
|
|
|
value: 0.108
|
|
|
name: Cosine Recall@1
|
|
|
- type: cosine_recall@3
|
|
|
value: 0.196
|
|
|
name: Cosine Recall@3
|
|
|
- type: cosine_recall@5
|
|
|
value: 0.272
|
|
|
name: Cosine Recall@5
|
|
|
- type: cosine_recall@10
|
|
|
value: 0.438
|
|
|
name: Cosine Recall@10
|
|
|
- type: cosine_ndcg@10
|
|
|
value: 0.24322279069515917
|
|
|
name: Cosine Ndcg@10
|
|
|
- type: cosine_mrr@10
|
|
|
value: 0.18493690476190464
|
|
|
name: Cosine Mrr@10
|
|
|
- type: cosine_map@100
|
|
|
value: 0.20597911270433167
|
|
|
name: Cosine Map@100
|
|
|
- task:
|
|
|
type: information-retrieval
|
|
|
name: Information Retrieval
|
|
|
dataset:
|
|
|
name: librispeech test
|
|
|
type: librispeech-test
|
|
|
metrics:
|
|
|
- type: cosine_accuracy@1
|
|
|
value: 0.151
|
|
|
name: Cosine Accuracy@1
|
|
|
- type: cosine_accuracy@3
|
|
|
value: 0.288
|
|
|
name: Cosine Accuracy@3
|
|
|
- type: cosine_accuracy@5
|
|
|
value: 0.371
|
|
|
name: Cosine Accuracy@5
|
|
|
- type: cosine_accuracy@10
|
|
|
value: 0.518
|
|
|
name: Cosine Accuracy@10
|
|
|
- type: cosine_precision@1
|
|
|
value: 0.151
|
|
|
name: Cosine Precision@1
|
|
|
- type: cosine_precision@3
|
|
|
value: 0.096
|
|
|
name: Cosine Precision@3
|
|
|
- type: cosine_precision@5
|
|
|
value: 0.0742
|
|
|
name: Cosine Precision@5
|
|
|
- type: cosine_precision@10
|
|
|
value: 0.0518
|
|
|
name: Cosine Precision@10
|
|
|
- type: cosine_recall@1
|
|
|
value: 0.151
|
|
|
name: Cosine Recall@1
|
|
|
- type: cosine_recall@3
|
|
|
value: 0.288
|
|
|
name: Cosine Recall@3
|
|
|
- type: cosine_recall@5
|
|
|
value: 0.371
|
|
|
name: Cosine Recall@5
|
|
|
- type: cosine_recall@10
|
|
|
value: 0.518
|
|
|
name: Cosine Recall@10
|
|
|
- type: cosine_ndcg@10
|
|
|
value: 0.31319206378414244
|
|
|
name: Cosine Ndcg@10
|
|
|
- type: cosine_mrr@10
|
|
|
value: 0.25047857142857116
|
|
|
name: Cosine Mrr@10
|
|
|
- type: cosine_map@100
|
|
|
value: 0.2693786295421681
|
|
|
name: Cosine Map@100
|
|
|
---
|
|
|
|
|
|
# CLAP model trained on COCO Captions
|
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) on the [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
|
|
## Model Details
|
|
|
|
|
|
### Model Description
|
|
|
- **Model Type:** Sentence Transformer
|
|
|
- **Base model:** [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) <!-- at revision 1d58d5192f5e4f16b57c574c7daf3d941404bd06 -->
|
|
|
- **Maximum Sequence Length:** None tokens
|
|
|
- **Output Dimensionality:** None dimensions
|
|
|
- **Similarity Function:** Cosine Similarity
|
|
|
- **Training Dataset:**
|
|
|
- [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr)
|
|
|
- **Language:** en
|
|
|
- **License:** apache-2.0
|
|
|
|
|
|
### Model Sources
|
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
|
|
### Full Model Architecture
|
|
|
|
|
|
```
|
|
|
SentenceTransformer(
|
|
|
(0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'audio': {'method': 'get_audio_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'ClapModel'})
|
|
|
)
|
|
|
```
|
|
|
|
|
|
## Usage
|
|
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
|
|
```bash
|
|
|
pip install -U sentence-transformers
|
|
|
```
|
|
|
|
|
|
Then you can load this model and run inference.
|
|
|
```python
|
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
# Download from the 🤗 Hub
|
|
|
model = SentenceTransformer("tomaarsen/clap-htsat-fused-librispeech")
|
|
|
# Run inference
|
|
|
sentences = [
|
|
|
'THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE INTOLERABLE THOSE ARE THE FANATICS',
|
|
|
'HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT THE MONEY PERHAPS HE COULD DO IT UP HERE',
|
|
|
'HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST',
|
|
|
]
|
|
|
embeddings = model.encode(sentences)
|
|
|
print(embeddings.shape)
|
|
|
# [3, 1024]
|
|
|
|
|
|
# Get the similarity scores for the embeddings
|
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
|
print(similarities)
|
|
|
# tensor([[ 1.0000, -0.4742, -0.2719],
|
|
|
# [-0.4742, 1.0000, 0.8206],
|
|
|
# [-0.2719, 0.8206, 1.0000]])
|
|
|
```
|
|
|
|
|
|
<!--
|
|
|
### Direct Usage (Transformers)
|
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
|
|
</details>
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
|
|
</details>
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
### Out-of-Scope Use
|
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
|
-->
|
|
|
|
|
|
## Evaluation
|
|
|
|
|
|
### Metrics
|
|
|
|
|
|
#### Information Retrieval
|
|
|
|
|
|
* Datasets: `librispeech-eval` and `librispeech-test`
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
|
|
|
|
|
| Metric | librispeech-eval | librispeech-test |
|
|
|
|:--------------------|:-----------------|:-----------------|
|
|
|
| cosine_accuracy@1 | 0.108 | 0.151 |
|
|
|
| cosine_accuracy@3 | 0.196 | 0.288 |
|
|
|
| cosine_accuracy@5 | 0.272 | 0.371 |
|
|
|
| cosine_accuracy@10 | 0.438 | 0.518 |
|
|
|
| cosine_precision@1 | 0.108 | 0.151 |
|
|
|
| cosine_precision@3 | 0.0653 | 0.096 |
|
|
|
| cosine_precision@5 | 0.0544 | 0.0742 |
|
|
|
| cosine_precision@10 | 0.0438 | 0.0518 |
|
|
|
| cosine_recall@1 | 0.108 | 0.151 |
|
|
|
| cosine_recall@3 | 0.196 | 0.288 |
|
|
|
| cosine_recall@5 | 0.272 | 0.371 |
|
|
|
| cosine_recall@10 | 0.438 | 0.518 |
|
|
|
| **cosine_ndcg@10** | **0.2432** | **0.3132** |
|
|
|
| cosine_mrr@10 | 0.1849 | 0.2505 |
|
|
|
| cosine_map@100 | 0.206 | 0.2694 |
|
|
|
|
|
|
<!--
|
|
|
## Bias, Risks and Limitations
|
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
### Recommendations
|
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
|
-->
|
|
|
|
|
|
## Training Details
|
|
|
|
|
|
### Training Dataset
|
|
|
|
|
|
#### librispeech_asr
|
|
|
|
|
|
* Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)
|
|
|
* Size: 132,553 training samples
|
|
|
* Columns: <code>audio</code> and <code>text</code>
|
|
|
* Approximate statistics based on the first 1000 samples:
|
|
|
| | audio | text |
|
|
|
|:--------|:-------------------|:-------------------------------------------------------------------------------------------------|
|
|
|
| type | dict | string |
|
|
|
| details | <ul><li></li></ul> | <ul><li>min: 20 characters</li><li>mean: 189.15 characters</li><li>max: 294 characters</li></ul> |
|
|
|
* Samples:
|
|
|
| audio | text |
|
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
| <code>{'path': '374-180298-0000.flac', 'array': array([ 6.92203816e-04, 8.04404495e-04, 8.03834875e-04, ...,<br> -3.02505396e-05, -6.59527450e-06, 1.11444592e-06]), 'sampling_rate': 48000}</code> | <code>CHAPTER SIXTEEN I MIGHT HAVE TOLD YOU OF THE BEGINNING OF THIS LIAISON IN A FEW LINES BUT I WANTED YOU TO SEE EVERY STEP BY WHICH WE CAME I TO AGREE TO WHATEVER MARGUERITE WISHED</code> |
|
|
|
| <code>{'path': '374-180298-0001.flac', 'array': array([-9.33515839e-05, -1.25754057e-04, -1.44482241e-04, ...,<br> -2.66165182e-04, -2.03228556e-04, -1.03404833e-04]), 'sampling_rate': 48000}</code> | <code>MARGUERITE TO BE UNABLE TO LIVE APART FROM ME IT WAS THE DAY AFTER THE EVENING WHEN SHE CAME TO SEE ME THAT I SENT HER MANON LESCAUT FROM THAT TIME SEEING THAT I COULD NOT CHANGE MY MISTRESS'S LIFE I CHANGED MY OWN</code> |
|
|
|
| <code>{'path': '374-180298-0002.flac', 'array': array([-2.47883319e-04, -2.91854434e-04, -2.82971043e-04, ...,<br> -1.43931946e-04, -1.17829914e-04, -6.32331648e-05]), 'sampling_rate': 48000}</code> | <code>I WISHED ABOVE ALL NOT TO LEAVE MYSELF TIME TO THINK OVER THE POSITION I HAD ACCEPTED FOR IN SPITE OF MYSELF IT WAS A GREAT DISTRESS TO ME THUS MY LIFE GENERALLY SO CALM</code> |
|
|
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
|
|
```json
|
|
|
{
|
|
|
"scale": 20.0,
|
|
|
"similarity_fct": "cos_sim",
|
|
|
"gather_across_devices": false
|
|
|
}
|
|
|
```
|
|
|
|
|
|
### Evaluation Dataset
|
|
|
|
|
|
#### librispeech_asr
|
|
|
|
|
|
* Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)
|
|
|
* Size: 1,000 evaluation samples
|
|
|
* Columns: <code>audio</code> and <code>text</code>
|
|
|
* Approximate statistics based on the first 1000 samples:
|
|
|
| | audio | text |
|
|
|
|:--------|:-------------------|:------------------------------------------------------------------------------------------------|
|
|
|
| type | dict | string |
|
|
|
| details | <ul><li></li></ul> | <ul><li>min: 8 characters</li><li>mean: 104.62 characters</li><li>max: 516 characters</li></ul> |
|
|
|
* Samples:
|
|
|
| audio | text |
|
|
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
| <code>{'path': '2277-149896-0000.flac', 'array': array([ 0.00179741, 0.00170625, 0.00120927, ..., -0.00144462,<br> -0.00102732, -0.00048062]), 'sampling_rate': 48000}</code> | <code>HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE</code> |
|
|
|
| <code>{'path': '2277-149896-0001.flac', 'array': array([ 0.00111104, 0.00081758, 0.00021103, ..., -0.00138193,<br> -0.0009173 , -0.00041702]), 'sampling_rate': 48000}</code> | <code>HE WOULD HAVE TO PAY HER THE MONEY WHICH SHE WOULD NOW REGULARLY DEMAND OR THERE WOULD BE TROUBLE IT DID NOT MATTER WHAT HE DID</code> |
|
|
|
| <code>{'path': '2277-149896-0002.flac', 'array': array([0.00080266, 0.00088462, 0.00083408, ..., 0.00105488, 0.00083673,<br> 0.00043296]), 'sampling_rate': 48000}</code> | <code>HURSTWOOD WALKED THE FLOOR MENTALLY ARRANGING THE CHIEF POINTS OF HIS SITUATION</code> |
|
|
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
|
|
```json
|
|
|
{
|
|
|
"scale": 20.0,
|
|
|
"similarity_fct": "cos_sim",
|
|
|
"gather_across_devices": false
|
|
|
}
|
|
|
```
|
|
|
|
|
|
### Training Hyperparameters
|
|
|
#### Non-Default Hyperparameters
|
|
|
|
|
|
- `eval_strategy`: steps
|
|
|
- `per_device_train_batch_size`: 16
|
|
|
- `per_device_eval_batch_size`: 16
|
|
|
- `learning_rate`: 2e-05
|
|
|
- `num_train_epochs`: 1
|
|
|
- `warmup_ratio`: 0.1
|
|
|
- `bf16`: True
|
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
|
|
#### All Hyperparameters
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
|
|
- `overwrite_output_dir`: False
|
|
|
- `do_predict`: False
|
|
|
- `eval_strategy`: steps
|
|
|
- `prediction_loss_only`: True
|
|
|
- `per_device_train_batch_size`: 16
|
|
|
- `per_device_eval_batch_size`: 16
|
|
|
- `gradient_accumulation_steps`: 1
|
|
|
- `eval_accumulation_steps`: None
|
|
|
- `torch_empty_cache_steps`: None
|
|
|
- `learning_rate`: 2e-05
|
|
|
- `weight_decay`: 0.0
|
|
|
- `adam_beta1`: 0.9
|
|
|
- `adam_beta2`: 0.999
|
|
|
- `adam_epsilon`: 1e-08
|
|
|
- `max_grad_norm`: 1.0
|
|
|
- `num_train_epochs`: 1
|
|
|
- `max_steps`: -1
|
|
|
- `lr_scheduler_type`: linear
|
|
|
- `lr_scheduler_kwargs`: {}
|
|
|
- `warmup_ratio`: 0.1
|
|
|
- `warmup_steps`: 0
|
|
|
- `log_level`: passive
|
|
|
- `log_level_replica`: warning
|
|
|
- `log_on_each_node`: True
|
|
|
- `logging_nan_inf_filter`: True
|
|
|
- `save_safetensors`: True
|
|
|
- `save_on_each_node`: False
|
|
|
- `save_only_model`: False
|
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
|
- `use_cpu`: False
|
|
|
- `seed`: 42
|
|
|
- `data_seed`: None
|
|
|
- `jit_mode_eval`: False
|
|
|
- `bf16`: True
|
|
|
- `fp16`: False
|
|
|
- `half_precision_backend`: None
|
|
|
- `bf16_full_eval`: False
|
|
|
- `fp16_full_eval`: False
|
|
|
- `tf32`: None
|
|
|
- `local_rank`: 0
|
|
|
- `ddp_backend`: None
|
|
|
- `tpu_num_cores`: None
|
|
|
- `debug`: []
|
|
|
- `dataloader_drop_last`: False
|
|
|
- `dataloader_num_workers`: 0
|
|
|
- `dataloader_prefetch_factor`: None
|
|
|
- `past_index`: -1
|
|
|
- `disable_tqdm`: False
|
|
|
- `remove_unused_columns`: True
|
|
|
- `label_names`: None
|
|
|
- `load_best_model_at_end`: False
|
|
|
- `ignore_data_skip`: False
|
|
|
- `fsdp`: []
|
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
|
- `parallelism_config`: None
|
|
|
- `deepspeed`: None
|
|
|
- `label_smoothing_factor`: 0.0
|
|
|
- `optim`: adamw_torch_fused
|
|
|
- `optim_args`: None
|
|
|
- `group_by_length`: False
|
|
|
- `length_column_name`: length
|
|
|
- `ddp_find_unused_parameters`: None
|
|
|
- `ddp_bucket_cap_mb`: None
|
|
|
- `ddp_broadcast_buffers`: False
|
|
|
- `dataloader_pin_memory`: True
|
|
|
- `dataloader_persistent_workers`: False
|
|
|
- `skip_memory_metrics`: True
|
|
|
- `use_legacy_prediction_loop`: False
|
|
|
- `push_to_hub`: False
|
|
|
- `resume_from_checkpoint`: None
|
|
|
- `hub_model_id`: None
|
|
|
- `hub_strategy`: every_save
|
|
|
- `hub_private_repo`: None
|
|
|
- `hub_always_push`: False
|
|
|
- `hub_revision`: None
|
|
|
- `gradient_checkpointing`: False
|
|
|
- `gradient_checkpointing_kwargs`: None
|
|
|
- `include_for_metrics`: []
|
|
|
- `eval_do_concat_batches`: True
|
|
|
- `mp_parameters`:
|
|
|
- `auto_find_batch_size`: False
|
|
|
- `full_determinism`: False
|
|
|
- `ray_scope`: last
|
|
|
- `ddp_timeout`: 1800
|
|
|
- `torch_compile`: False
|
|
|
- `torch_compile_backend`: None
|
|
|
- `torch_compile_mode`: None
|
|
|
- `include_tokens_per_second`: False
|
|
|
- `include_num_input_tokens_seen`: no
|
|
|
- `neftune_noise_alpha`: None
|
|
|
- `optim_target_modules`: None
|
|
|
- `batch_eval_metrics`: False
|
|
|
- `eval_on_start`: False
|
|
|
- `use_liger_kernel`: False
|
|
|
- `liger_kernel_config`: None
|
|
|
- `eval_use_gather_object`: False
|
|
|
- `average_tokens_across_devices`: True
|
|
|
- `prompts`: None
|
|
|
- `batch_sampler`: no_duplicates
|
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
- `router_mapping`: {}
|
|
|
- `learning_rate_mapping`: {}
|
|
|
|
|
|
</details>
|
|
|
|
|
|
### Training Logs
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
|
|
| Epoch | Step | Training Loss | Validation Loss | librispeech-eval_cosine_ndcg@10 | librispeech-test_cosine_ndcg@10 |
|
|
|
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:-------------------------------:|
|
|
|
| -1 | -1 | - | - | 0.0114 | - |
|
|
|
| 0.0100 | 83 | 3.5908 | - | - | - |
|
|
|
| 0.0200 | 166 | 2.5371 | - | - | - |
|
|
|
| 0.0301 | 249 | 2.1799 | - | - | - |
|
|
|
| 0.0401 | 332 | 2.0415 | - | - | - |
|
|
|
| 0.0501 | 415 | 1.9394 | - | - | - |
|
|
|
| 0.0601 | 498 | 1.8167 | - | - | - |
|
|
|
| 0.0701 | 581 | 1.7589 | - | - | - |
|
|
|
| 0.0801 | 664 | 1.7262 | - | - | - |
|
|
|
| 0.0902 | 747 | 1.7585 | - | - | - |
|
|
|
| 0.1001 | 829 | - | 1.5991 | 0.0335 | - |
|
|
|
| 0.1002 | 830 | 1.7521 | - | - | - |
|
|
|
| 0.1102 | 913 | 1.6822 | - | - | - |
|
|
|
| 0.1202 | 996 | 1.6176 | - | - | - |
|
|
|
| 0.1302 | 1079 | 1.6391 | - | - | - |
|
|
|
| 0.1403 | 1162 | 1.6931 | - | - | - |
|
|
|
| 0.1503 | 1245 | 1.4626 | - | - | - |
|
|
|
| 0.1603 | 1328 | 1.4305 | - | - | - |
|
|
|
| 0.1703 | 1411 | 1.4998 | - | - | - |
|
|
|
| 0.1803 | 1494 | 1.4073 | - | - | - |
|
|
|
| 0.1903 | 1577 | 1.3843 | - | - | - |
|
|
|
| 0.2001 | 1658 | - | 1.2227 | 0.0925 | - |
|
|
|
| 0.2004 | 1660 | 1.3371 | - | - | - |
|
|
|
| 0.2104 | 1743 | 1.3908 | - | - | - |
|
|
|
| 0.2204 | 1826 | 1.2835 | - | - | - |
|
|
|
| 0.2304 | 1909 | 1.3203 | - | - | - |
|
|
|
| 0.2404 | 1992 | 1.2549 | - | - | - |
|
|
|
| 0.2505 | 2075 | 1.2384 | - | - | - |
|
|
|
| 0.2605 | 2158 | 1.2189 | - | - | - |
|
|
|
| 0.2705 | 2241 | 1.1658 | - | - | - |
|
|
|
| 0.2805 | 2324 | 1.1771 | - | - | - |
|
|
|
| 0.2905 | 2407 | 1.2068 | - | - | - |
|
|
|
| 0.3002 | 2487 | - | 1.0471 | 0.1318 | - |
|
|
|
| 0.3005 | 2490 | 1.1708 | - | - | - |
|
|
|
| 0.3106 | 2573 | 1.1389 | - | - | - |
|
|
|
| 0.3206 | 2656 | 1.0786 | - | - | - |
|
|
|
| 0.3306 | 2739 | 1.0792 | - | - | - |
|
|
|
| 0.3406 | 2822 | 1.0562 | - | - | - |
|
|
|
| 0.3506 | 2905 | 0.98 | - | - | - |
|
|
|
| 0.3607 | 2988 | 1.1153 | - | - | - |
|
|
|
| 0.3707 | 3071 | 0.9987 | - | - | - |
|
|
|
| 0.3807 | 3154 | 1.0002 | - | - | - |
|
|
|
| 0.3907 | 3237 | 1.0017 | - | - | - |
|
|
|
| 0.4002 | 3316 | - | 0.8901 | 0.1589 | - |
|
|
|
| 0.4007 | 3320 | 0.9364 | - | - | - |
|
|
|
| 0.4107 | 3403 | 0.9394 | - | - | - |
|
|
|
| 0.4208 | 3486 | 0.9459 | - | - | - |
|
|
|
| 0.4308 | 3569 | 0.9604 | - | - | - |
|
|
|
| 0.4408 | 3652 | 0.9491 | - | - | - |
|
|
|
| 0.4508 | 3735 | 0.9295 | - | - | - |
|
|
|
| 0.4608 | 3818 | 0.9508 | - | - | - |
|
|
|
| 0.4709 | 3901 | 0.9122 | - | - | - |
|
|
|
| 0.4809 | 3984 | 0.8483 | - | - | - |
|
|
|
| 0.4909 | 4067 | 0.8443 | - | - | - |
|
|
|
| 0.5003 | 4145 | - | 0.7955 | 0.1908 | - |
|
|
|
| 0.5009 | 4150 | 0.8838 | - | - | - |
|
|
|
| 0.5109 | 4233 | 0.8367 | - | - | - |
|
|
|
| 0.5209 | 4316 | 0.8516 | - | - | - |
|
|
|
| 0.5310 | 4399 | 0.8112 | - | - | - |
|
|
|
| 0.5410 | 4482 | 0.8368 | - | - | - |
|
|
|
| 0.5510 | 4565 | 0.873 | - | - | - |
|
|
|
| 0.5610 | 4648 | 0.8156 | - | - | - |
|
|
|
| 0.5710 | 4731 | 0.8864 | - | - | - |
|
|
|
| 0.5811 | 4814 | 0.8278 | - | - | - |
|
|
|
| 0.5911 | 4897 | 0.8006 | - | - | - |
|
|
|
| 0.6004 | 4974 | - | 0.7649 | 0.1874 | - |
|
|
|
| 0.6011 | 4980 | 0.8199 | - | - | - |
|
|
|
| 0.6111 | 5063 | 0.7475 | - | - | - |
|
|
|
| 0.6211 | 5146 | 0.7345 | - | - | - |
|
|
|
| 0.6311 | 5229 | 0.7301 | - | - | - |
|
|
|
| 0.6412 | 5312 | 0.774 | - | - | - |
|
|
|
| 0.6512 | 5395 | 0.7391 | - | - | - |
|
|
|
| 0.6612 | 5478 | 0.6929 | - | - | - |
|
|
|
| 0.6712 | 5561 | 0.7218 | - | - | - |
|
|
|
| 0.6812 | 5644 | 0.7071 | - | - | - |
|
|
|
| 0.6912 | 5727 | 0.7024 | - | - | - |
|
|
|
| 0.7004 | 5803 | - | 0.6712 | 0.2419 | - |
|
|
|
| 0.7013 | 5810 | 0.6428 | - | - | - |
|
|
|
| 0.7113 | 5893 | 0.6719 | - | - | - |
|
|
|
| 0.7213 | 5976 | 0.6972 | - | - | - |
|
|
|
| 0.7313 | 6059 | 0.7043 | - | - | - |
|
|
|
| 0.7413 | 6142 | 0.663 | - | - | - |
|
|
|
| 0.7514 | 6225 | 0.6963 | - | - | - |
|
|
|
| 0.7614 | 6308 | 0.6591 | - | - | - |
|
|
|
| 0.7714 | 6391 | 0.6736 | - | - | - |
|
|
|
| 0.7814 | 6474 | 0.7033 | - | - | - |
|
|
|
| 0.7914 | 6557 | 0.6314 | - | - | - |
|
|
|
| 0.8005 | 6632 | - | 0.6806 | 0.2319 | - |
|
|
|
| 0.8014 | 6640 | 0.6508 | - | - | - |
|
|
|
| 0.8115 | 6723 | 0.6532 | - | - | - |
|
|
|
| 0.8215 | 6806 | 0.6788 | - | - | - |
|
|
|
| 0.8315 | 6889 | 0.6038 | - | - | - |
|
|
|
| 0.8415 | 6972 | 0.658 | - | - | - |
|
|
|
| 0.8515 | 7055 | 0.656 | - | - | - |
|
|
|
| 0.8616 | 7138 | 0.6533 | - | - | - |
|
|
|
| 0.8716 | 7221 | 0.601 | - | - | - |
|
|
|
| 0.8816 | 7304 | 0.6243 | - | - | - |
|
|
|
| 0.8916 | 7387 | 0.6315 | - | - | - |
|
|
|
| 0.9005 | 7461 | - | 0.6526 | 0.2432 | - |
|
|
|
| 0.9016 | 7470 | 0.5707 | - | - | - |
|
|
|
| 0.9116 | 7553 | 0.5778 | - | - | - |
|
|
|
| 0.9217 | 7636 | 0.5736 | - | - | - |
|
|
|
| 0.9317 | 7719 | 0.615 | - | - | - |
|
|
|
| 0.9417 | 7802 | 0.5756 | - | - | - |
|
|
|
| 0.9517 | 7885 | 0.5724 | - | - | - |
|
|
|
| 0.9617 | 7968 | 0.5678 | - | - | - |
|
|
|
| 0.9718 | 8051 | 0.5661 | - | - | - |
|
|
|
| 0.9818 | 8134 | 0.6162 | - | - | - |
|
|
|
| 0.9918 | 8217 | 0.5766 | - | - | - |
|
|
|
| -1 | -1 | - | - | - | 0.3132 |
|
|
|
|
|
|
</details>
|
|
|
|
|
|
### Environmental Impact
|
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
|
- **Energy Consumed**: 0.429 kWh
|
|
|
- **Carbon Emitted**: 0.115 kg of CO2
|
|
|
- **Hours Used**: 2.094 hours
|
|
|
|
|
|
### Training Hardware
|
|
|
- **On Cloud**: No
|
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
|
|
### Framework Versions
|
|
|
- Python: 3.11.6
|
|
|
- Sentence Transformers: 5.2.0.dev0
|
|
|
- Transformers: 4.57.0.dev0
|
|
|
- PyTorch: 2.8.0+cu128
|
|
|
- Accelerate: 1.6.0
|
|
|
- Datasets: 3.6.0
|
|
|
- Tokenizers: 0.22.1
|
|
|
|
|
|
## Citation
|
|
|
|
|
|
### BibTeX
|
|
|
|
|
|
#### Sentence Transformers
|
|
|
```bibtex
|
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
|
month = "11",
|
|
|
year = "2019",
|
|
|
publisher = "Association for Computational Linguistics",
|
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
|
}
|
|
|
```
|
|
|
|
|
|
<!--
|
|
|
## Glossary
|
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
## Model Card Authors
|
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
## Model Card Contact
|
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
|
--> |